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KARMA DAJANI AND CHARLENE KALLE

Abstract. In this paper we define random β-expansions with digits taken
from a given set of real numbers A = {a1, . . . , am}. We study a generalization
of the greedy and lazy expansion and define a function K, that generates
essentially all β-expansions with digits belonging to the set A. We show that
K admits an invariant measure ν under which K is isomorphic to the uniform
Bernoulli shift on A.

1. Introduction

Let β > 1 be a real number, and A = {a1, . . . , am} a given set of real numbers.
We assume that a1 < a2 < . . . < am, and that m ≥ 2. We are interested in
algorithms that generate β-expansions of the form

(1) x =
∞∑

i=1

bi

βi
,

with bi ∈ A. Clearly, such an expansion is possible for points in the interval
[

a1

β − 1
,

am

β − 1
], but not necesarily for all points in this interval; see [KSS]. There

are two cases that have been extensively studied. The first is when β = r is an
integer, and A = {0, 1, . . . , r − 1}, leading to the well-known r-adic expansion of
points in [0, 1]. Each point has a unique expansion except for points of the form
k/rn, 0 < k ≤ rn − 1 which have exactly two expansions. The second is when
β > 1 is a non-integer, and A = {0, 1, . . . , bβc}, is a complete digit set. In this case,
almost every x ∈ [0, bβc/(β−1)] has a continuum number of expansions of the form

x =
∞∑

k=1

ak

βk
, ak ∈ {0, 1, . . . , bβc}, k ≥ 1,

see [EJK], [Si], [DV1]. There are two well-known algorithms producing β-expansions
with a complete digit set, the greedy and the lazy algorithms. The greedy algorithm
chooses at each step the largest possible digit, while the lazy chooses the smallest
possible digit. Dynamically, the greedy algorithm is generated by iterating the map
Tβ defined on [0, bβc/(β − 1)] by

Tβ(x) =





βx (mod 1), 0 ≤ x < 1,

βx− bβc, 1 ≤ x ≤ bβc/(β − 1).

Similarly, the lazy algorithm is obtained by iterating the map Lβ defined on the
interval [0, bβc/(β − 1)] by
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Lβ(x) = βx− d for x ∈ ∆(d),

where

∆(0) =
[
0,

bβc
β(β − 1)

]
,

and

∆(d) =
( bβc

β − 1
− bβc − d + 1

β
,
bβc

β − 1
− bβc − d

β

]

=
( bβc

β(β − 1)
+

d− 1
β

,
bβc

β(β − 1)
+

d

β

]
, d ∈ {1, 2, . . . , bβc}.

In order to capture, in a dynamical way, all possible expansions with a com-
plete digit sets, the authors in [DK2] and [DV] considered a map Kβ , defined on

{0, 1}N × [0,
bβc

β − 1
], which gives rise to random β-expansions. The map Kβ is de-

fined as follows. We first partition the interval [0,
bβc

β − 1
] into bβc switch regions,

S1, . . . , Sbβc, and bβc+ 1 equality regions, E0, . . . , Ebβc, where

E0 =
[
0,

1
β

)
, Ebβc =

( bβc
β(β − 1)

+
bβc − 1

β
,
bβc

β − 1

]
,

Ek =
( bβc

β(β − 1)
+

k − 1
β

,
k + 1

β

)
, k = 1, . . . , bβc − 1,

Sk =
[

k

β
,

bβc
β(β − 1)

+
k − 1

β

]
, k = 1, . . . , bβc.

On Sk, the greedy map assigns the digit k, while the lazy map assigns the digit
k−1. On Ek both maps assign the same digit k. The elements ω ∈ {0, 1}N determine
which digit is chosen each time we can make a decision. The transformation Kβ :

{0, 1}N × [0,
bβc

β − 1
] → {0, 1}N × [0,

bβc
β − 1

] is then given by

Kβ(ω, x) =





(ω, βx− k), if x ∈ Ek, k = 0, . . . , bβc,

(σ(ω), βx− k), if x ∈ Sk and ω1 = 1, k = 1, . . . , bβc,

(σ(ω), βx− k + 1), if x ∈ Sk and ω1 = 0, k = 1, . . . bβc,

where σ : {0, 1}N → {0, 1}N is the left shift. The digits are defined by

d1 = d1(ω, x) =





k, if x ∈ Ek, k = 0, . . . , bβc,

or (ω, x) ∈ {ω1 = 1} × Sk, k = 1, . . . , bβc,

k − 1, if (ω, x) ∈ {ω1 = 0} × Sk, k = 1, . . . , bβc,
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and for n ≥ 1, dn = dn(ω, x) = d1(Kn−1
β (ω, x)). An element x ∈ [0, bβcβ−1 ]

has a unique β-expansion if and only if the orbit of x under the map Tβ vis-
its only the equality regions. Furthermore, in [DV] it is shown that there ex-
ists a unique Kβ-invariant measure of maximal entropy νβ such that the system
({0, 1}N × [0, bβcβ−1 ],F × B, νβ ,Kβ) is isomorphic to the uniform Bernoulli shift on
bβc + 1 symbols, where F is the product σ-algebra on {0, 1}N and B is the Borel
σ-algebra on [0, bβcβ−1 ].

In [P], M. Pedicini defined an algorithm that generates expansions of the form

x =
∞∑

i=1

bi

βi
, where the digits bi belong to an arbitrary set of real numbers A =

{a1, a2, . . . , am}. His algorithm, which we call greedy with deleted digits is similar
to the “classical greedy expansion” i.e. with a complete digit set, and is defined
recursively as follows.

Let x ∈
[

a1

β − 1
,

am

β − 1

]
and suppose the digits b1 = b1(x), . . . , bn−1 = bn−1(x) are

already defined, then bn = bn(x) is the largest element of {a1, . . . , am}, such that

(2)
b1

β
+ . . . +

bn

βn
+

∞∑

i=n+1

a1

βi
≤ x.

Pedicini showed that if

(3) max
1≤j≤m−1

(aj+1 − aj) ≤ am − a1

β − 1
,

then every point x in
[

a1

β − 1
,

am

β − 1

]
has a greedy expansion of the form x =

∑∞
i=1

bi

βi with the digits bi in A and satisfying (3). In Section 2, we give a dynamical
way of generating this greedy expansion. This allows us to give simple dynamical
proofs of some of the results proved in [P]. We also study a generalization of the lazy
expansion and its relationship with the greedy expansion. In the third section, we
define random β-expansions with deleted digits and show that the transformation
K generating these expansions captures all possible β-expansions with a given digit
set A. We also find a K-invariant measure such that (K, ν) is isomorphic to the
uniform Bernoulli shift with digit set A.

2. The Greedy and Lazy Transformations with Deleted Digits

Let β > 1 be a real number. We call a set of numbers A = {a1, . . . , am} with
a1 < . . . < am ∈ R an allowable digit set for β, if it satisfies (3). Throughout the

rest of the paper, we denote the interval
[

a1

β − 1
,

am

β − 1

]
by Ja1,am , and we assume

that A is an allowable digit set. We are seeking a transformation T on Ja1,am such

that if (1) is the greedy expansion of x as given by (2), then Tnx =
∞∑

i=1

bn+i

βi
. Now,
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if we rewrite condition (2), we see that for k = 1, . . . , m− 1,

bn = ak ⇔
n−1∑

i=1

bi

βi
+

ak

βn
+

∞∑

i=n+1

a1

βi
≤ x <

n−1∑

i=1

bi

βi
+

ak+1

βn
+

∞∑

i=n+1

a1

βi

⇔ a1

βn(β − 1)
+

ak

βn
≤ 1

βn−1

∞∑

i=1

bn−1+i

βi
<

a1

βn(β − 1)
+

ak+1

βn

⇔ a1

β − 1
+

ak − a1

β
≤

∞∑

i=1

bn−1+i

βi
<

a1

β − 1
+

ak+1 − a1

β
,

and bn = am if and only if

a1

β − 1
+

am − a1

β
≤

∞∑

i=1

bn−1+i

βi
≤ am

β − 1
.

In view of this we define the greedy transformation T = Tβ,A with allowable digit
set A by

Tx =





βx− aj , if x ∈
[

a1

β − 1
+

aj − a1

β
,

a1

β − 1
+

aj+1 − a1

β

)
,

for j = 1, . . . ,m− 1,

βx− am, if x ∈
[

a1

β − 1
+

am − a1

β
,

am

β − 1

]
.

Notice that T ([
a1

β − 1
+

am − a1

β
,

am

β − 1
]) = [

a1

β − 1
,

am

β − 1
] = Ja1,am . Furthermore,

the assumption that A is an allowable digit set implies that for j = 1, 2, . . . , m− 1,

T ([
a1

β − 1
+

aj − a1

β
,

a1

β − 1
+

aj+1 − a1

β
)) = [

a1

β − 1
,

a1

β − 1
+ aj+1 − aj) ⊆ Ja1,am .

This shows that T maps the interval Ja1,am onto itself.
Let

b1 = b1(x) =





aj , if x ∈
[

a1

β − 1
+

aj − a1

β
,

a1

β − 1
+

aj+1 − a1

β

)
,

for j = 1, . . . ,m− 1,

am, if x ∈
[

a1

β − 1
+

am − a1

β
,

am

β − 1

]
.

and set bn = bn(x) = b1(Tn−1x). Then, Tx = βx− b1, and for any n ≥ 1,

x =
n∑

i=1

bi

βi
+

Tnx

βn
.

Letting n →∞, it is easily seen that x =
∞∑

n=1

bn

βn
, with bn satisfying (2). From the

definition of the greedy map T , it is easy to see that the point
am

β − 1
is the only

point whose greedy expansion eventually ends in the sequence am, am, . . ..
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− a3a+
ß−1

1a

3− a4a+
ß−1

1a

1− a2a+
ß−1

2

1
ßx

− 
a

3
ßx

− 
a

2
ßx

− 
a

m
ßx

− 
a

1

a

ß
+

ß−1
1a 1− ama

ß
+

ß−1
1a

ß−1
ma3

a

ß−1
ma

ß−1
1a 1− a2a

ß
+

ß−1
1a 1− a

Figure 1. The greedy transformation with deleted digits.

In the next proposition we show that the usual order on R respects the lexico-
graphical ordering <lex on the set of sequences.

Proposition 2.1. Let A be an allowable digit set and suppose x =
∞∑

i=1

bi

βi
and

y =
∞∑

i=1

di

βi
are the greedy expansions of x and y in base β and digits in A. Then

x < y ⇔ (b1, b2, . . .) <lex (d1, d2, . . .).

Proof. Suppose x =
∞∑

i=1

bi

βi
<

∞∑

i=1

di

βi
= y. Then (b1, b2, . . .) 6= (d1, d2, . . .). Let k

be the smallest integer, such that bk 6= dk. If bk > dk, then

y <

k−1∑

i=1

bi

βi
+

dk + 1
βk

+
∞∑

i=k+1

a1

βi
≤

k−1∑

i=1

bi

βi
+

bk

βk
+

∞∑

i=k+1

a1

βi
≤ x,

contradicting the assumption that x < y. So,

(b1, b2, . . .) <lex (d1, d2, . . .).

Conversely, if (b1, b2, . . .) <lex (d1, d2, . . .) and k is the first index such that bk < dk,
then T k−1x < T k−1y, which implies that

x =
b1

β
+ . . . +

bk−2

βk−2
+

1
βk−1

T k−1x <
b1

β
+ . . . +

bk−2

βk−2
+

1
βk−1

T k−1y = y.

¤

The next lemma states that condition (3) puts a restriction on the number of
elements of the allowable set A.
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Lemma 2.1. Let β > 1 be a real number, and A = {a1, . . . , am} an allowable digit
set. Then, m ≥ dβe, where dβe is the smallest integer greater or equal to β.

Proof. By assumption, aj+1 − aj ≤ am − a1

β − 1
for all 1 ≤ j ≤ m− 1. Summing over

j gives

am − a1 =
m−1∑

j=1

(aj+1 − aj) ≤ (m− 1)
am − a1

β − 1
,

so β ≤ m. Since m is an integer, one has that m ≥ dβe. ¤

Remark 2.1. (i) In [P], Pedicini proved among other things that if x =
∞∑

n=1

bn

βn
is

the greedy expansion of x, and if bn = ak 6= am, then

(4) bn+1bn+2 . . . <lex c1c2 . . . ,

where
a1

β − 1
+ ak+1 − ak =

∞∑
n=1

cn

βn
is the greedy expansion of

a1

β − 1
+ ak+1 − ak.

Using our approach we can give a simple proof of this result as follows. Since T is
piecewise increasing, one easily sees that if Tn−1x has first greedy digit ak 6= am,
then

(5) Tnx <
a1

β − 1
+ ak+1 − ak.

Since Tnx =
∞∑

i=1

bn+i

βi
is the greedy expansion of Tnx, then from Proposition 2.1

we see that (4) is equivalent to (5).

(ii) In [KSS], Keane, Smorodinsky and Solomyak studied the size of the set

Cβ = {
∞∑

n=1

bn

βn
: bn ∈ {0, 1, 3}}.

They showed that if β ≤ 5/2, then Cβ = [0,
3

β − 1
]. This is exactly the case that the

digit set A = {0, 1, 3} is allowable for β. They also showed that Cβ has Lebesgue
measure zero if β ≥ 3, and they exhibited a countable set of β′s in the interval
(5/2, 3) for which Cβ has Lebesgue measure zero. In [PS], the Hausdorff dimension
of Cβ was obtained. See [PSS] for further generalizations.

As in the (classical) complete digit case (see [DK1], [EJ], [EJK], [KL]), we can de-
fine, recursively as well as dynamically, another algorithm generating β-expansions,
called the lazy algorithm. Given a real number β > 1 and an allowable digit set
A = {a1, . . . , am}, we first define the lazy expansion recursively as follows. Let

x ∈
[

a1

β − 1
,

am

β − 1

]
and suppose the digits c1 = c1(x), . . . , cn−1 = cn−1(x) are

already defined, then cn = cn(x) is the smallest element of A such that

(6) x ≤
n−1∑

i=1

ci

βi
+

cn

βn
+

∞∑

i=n+1

am

βi
.
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It is not yet obvious that this leads to an expansion, but we will use this notation
formally in order to derive a dynamical definition, where it will be clear that such
an algorithm leads to an expansion. Rewriting condition (6), one sees that for
k = 2, . . . ,m,

cn = ak ⇔
n−1∑

i=1

ci

βi
+

ak−1

βn
+

∞∑

i=n+1

am

βi
< x ≤

n−1∑

i=1

ci

βi
+

ak

βn
+

∞∑

i=n+1

am

βi

⇔ am

β − 1
− am − ak−1

β
<

∞∑

i=1

cn−1+i

βi
≤ am

β − 1
− am − ak

β
,

and cn = a1 if and only if

a1

β − 1
≤

∞∑

i=1

cn−1+i

βi
≤ am

β − 1
− am − a1

β

As in the greedy case, we want to define a transformation L on Ja1,am such that

if x =
∞∑

i=1

ci

βi
is the lazy expansion of x, then Ln−1x =

∞∑

i=1

cn−1+i

βi
. In view of the

above, we define the lazy transformation L = Lβ,A with allowable digit set A by

Lx =





βx− a1, if x ∈
[

a1

β − 1
,

am

β − 1
− am − a1

β

]
,

βx− aj , if x ∈
(

am

β − 1
− am − aj−1

β
,

am

β − 1
− am − aj

β

]
,

for j = 2, . . . , m.

Notice that L([
a1

β − 1
,

am

β − 1
− am − a1

β
]) = [

a1

β − 1
,

am

β − 1
] = Ja1,am . Furthermore,

since A is allowable, then for j = 2, . . . , m one has

L

((
am

β − 1
− am − aj−1

β
,

am

β − 1
− am − aj

β

])
=

(
am

β − 1
− (aj+1 − aj),

am

β − 1

]
⊆ Ja1,am ,

This shows that L maps the interval Ja1,am onto itself. Let

c1 = c1(x) =





a1 if x ∈
[

a1

β − 1
,

am

β − 1
− am − a1

β

]
,

aj , if x ∈
(

am

β − 1
− am − aj−1

β
,

am

β − 1
− am − aj

β

]
,

for j = 2, . . . ,m,

and set cn = cn(x) = c1(Ln−1x). Then, Lx = βx− c1, and for any n ≥ 1,

x =
n∑

i=1

ci

βi
+

Lnx

βn
.

Letting n →∞, it is easily seen that x =
∞∑

n=1

cn

βn
, with cn satisfying (6). ¿From the

definition of the map L it is easily seen that the point
a1

β − 1
is the only point in

the interval Ja1,am whose lazy expansion eventually ends in the sequence a1, a1, . . ..



8 KARMA DAJANI AND CHARLENE KALLE

ßx
− 

a

1− ama

ß
−

ß−1
ma 2− ama

ß
−

ß−1
ma

1

2
ßx

− 
a

m
ßx

−a

3
ßx

− 
a

m−1

a

)2− a3− (a
ß−1

ma

)1− a2− ( a
ß−1

ma

ß−1
ma

m

− ama

ß
−

ß−1
ma

ß−1
1a

ß−1
ma

)m−1− am− (a
ß−1

Figure 2. The lazy transformation with deleted digits.

Let A = {a1, . . . , am} be a digit set. Consider the digit set Ā = {ām, . . . , ā1},
where āi = a1 + am− ai. Notice that ām = a1, ā1 = am, and āi− āi+1 = ai+1− ai,
i = 1, . . . , m − 1. Thus, A is allowable if and only if Ā is allowable. We have the
following proposition.

Proposition 2.2. Let A = {a1, . . . , am} be an allowable digit set, and let T =
Tβ,A and L = Lβ,Ā be the greedy and lazy transformations with digit set A and Ā
respectively. Define f : Ja1,am → Ja1,am by

f(x) =
a1 + am

β − 1
− x.

Then, f is a continuous bijection satisfying L ◦ f = f ◦ T.

Proof. It is clear that f is a continuous bijection. It remains to show that L ◦ f =

f◦T. To this end, let x ∈
[

a1

β − 1
+

ai − a1

β
,

a1

β − 1
+

ai+1 − a1

β

)
, then Tx = βx−ai

and

f(Tx) =
a1 + am

β − 1
− βx + ai.

On the other hand,

f(x) ∈
(

ām

β − 1
− ām − āi+1

β
,

ām

β − 1
− ām − āi

β

]
.

Thus,

L(f(x)) = βf(x)− āi =
a1 + am

β − 1
− βx + ai = f(Tx).

A similar proof works for the case x ∈
[

a1

β − 1
+

am − a1

β
,

am

β − 1

]
. ¤
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Remark 2.2. (i) From Proposition 2.2, we see that if x =
∞∑

i=1

bi

βi
is the greedy

expansion of x with digits in A, then f(x) =
∞∑

i=1

b̄i

βi
is the lazy expansion of f(x)

with digits in Ā.

(ii) In a similar way as in the proof of Proposition 2.2, one can show that the

function g :
[
0,

am − a1

β − 1

]
→

[
a1

β − 1
,

am

β − 1

]
, given by

g(x) = x +
a1

β − 1

is a continuous bijection satisfying T ◦ f = f ◦ T ′, where T ′ is the greedy transfor-
mation for the same β, but with digit set A′ = {0, a2 − a1, . . . , am − a1}.

3. Random β-expansions with Deleted Digits

Let β > 1, and A be a given allowable digit set for β. In this section, we will
define a transformation whose iterates generate all possible β-expansions with digit
set A. In order to do so, we will construct a random procedure similar to that
studied in [DK2] and [DV] for the case when A is a complete digit set. We first
superimpose the greedy transformation T and the lazy transformation L both with
digit set A. In Figure 3, the greedy and lazy transformations for β = 2.5 and
A = {3, 4.25, 6, 11, 14.5, 15} are given. We see that there are regions in which the
greedy and lazy transformation overlap, but there are also regions in which we can
choose between a number of different digits. As in the classical case we will call
the regions in which the two transformations overlap equality regions, since the
digits assigned there are completely determined. The regions in which we can make
a choice are called switch regions. In Figure 3 there are three equality regions,
and seven switch regions. On four switch regions we have a choice of two possible
digits, and on three switch regions we have a choice of three possible digits. The
boundaries of these regions are given by the points specified by the transformations
as given in the previous section (see Example 3.1).

To describe the general situation, we first define for 1 ≤ j ≤ m − 1 the greedy
partition points by

gj =
a1

β − 1
+

aj+1 − a1

β
,

and the lazy partition points by

lj =
am

β − 1
− am − aj

β
.

We set l0 = g0 =
a1

β − 1
, and lm = gm =

am

β − 1
. Notice that gj ≤ lj for all

0 ≤ j ≤ m. Furthermore, on [gj−1, gj), the greedy transformation T is given by
Tx = βx−aj , and on (lj−1, lj ], the lazy transformation L is given by Lx = βx−aj .
If lj = gj+k for some k, j with j > 0, j + k < m, then any expansion ending in
the digits aj , am, am, . . . has a corresponding representation ending in the digits
aj+k+1, a1, a1, . . ..



10 KARMA DAJANI AND CHARLENE KALLE

greedy
lazy
both
neither

2 2.5 3.2 5.2 5.7 6.4 6.6 6.8 8.4 109.8

Figure 3. The greedy and lazy expansion for β = 2.5 and allow-
able digit set A = {3, 4.25, 6, 11, 14.5, 15}.

Using the points lj , gj , j = 0, 1, . . . ,m, we can make a new partition of the
interval [

a1

β − 1
,

am

β − 1
] in the following way. Let {pn : 0 ≤ n ≤ 2m − 1} be the

ordered sequence obtained when the greedy and the lazy partition points are written
in increasing order. Notice that

p0 = l0 = g0 =
a1

β − 1
and p2m−1 = lm = gm =

am

β − 1
.

If for some j, k, we have lj = gj+k, then we write it once, and we consider it as a
greedy partition point. Now consider the partition P consisting of intervals with
endpoints two consecutive elements of this sequence, in such a way that the left
endpoint of such an interval is included if it is given by a greedy partition point
and excluded if it is given by a lazy partition point. Similarly, the right endpoint
is excluded if it is given by a greedy partition point and included if it is given by a
lazy partition point.

Example 3.1. Let β = 2.5 and consider the digit set A = {3, 4.25, 6, 11, 14.5, 15}.
The greedy and lazy partition points are given by

g1 = 3
1.5 + 1.25

2.5 = 2.5, l1 = 15
1.5 − 12

2.5 = 5.2,

g2 = 3
1.5 + 3

2.5 = 3.2, l2 = 15
1.5 − 10.75

2.5 = 5.7,

g3 = 3
1.5 + 8

2.5 = 5.2, l3 = 15
1.5 − 9

2.5 = 6.4,

g4 = 3
1.5 + 11.5

2.5 = 6.6, l4 = 15
1.5 − 4

2.5 = 8.4,

g5 = 3
1.5 + 12

2.5 = 6.8, l5 = 15
1.5 − 0.5

2.5 = 9.8,

and the partition P is then

P = {[2; 2.5), [2.5; 3.2), [3.2; 5.2), [5.2; 5.7], (5.7; 6.4], (6.4; 6.6),
[6.6; 6.8), [6.8; 8.4], (8.4; 9.8], (9.8, 10]}.
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We now identify explicitly the intervals that are the equality regions and those
that are the switch regions. If there is a 2 ≤ j ≤ m − 1 such that lj−1 < gj ,
then since gi ≤ li for each i, we know that the interval (lj−1, gj) must belong to
P. On such an interval the greedy and lazy transformation overlap. This interval
is therefore an equality region and we will call it Eaj

. Furthermore, we will write
[p0, p1) = [ a1

β−1 , g1) = Ea1 and (p2m−2, p2m−1] = (lm−1,
am

β−1 ] = Eam , since the two
transformations always overlap in the first and last interval. In all the other cases
the interval is a switch region. An interval with endpoints pn and pn+1 is called
Saj ,...,aj+k

if j + k − 1 = max{i : gi ≤ pn} and j − 1 = max{i : li ≤ pn}. So, the
endpoints of Saj ,...,aj+k

are given by max{gj+k−1, lj−1} and min{gj+k, lj}. In this
way every element of the partition P is either an equality region or a switch region.

Example 3.2. If we take β and A as in the previous example, we have the following
equality and switch regions:

P1 = [2; 2.5) = E3, P2 = [2.5; 3.2) = S3,4.25,
P3 = [3.2; 5.2) = S3,4.25,6, P4 = [5.2; 5.7] = S4.25,6,11,
P5 = (5.7; 6.4] = S6,11, P6 = (6.4; 6.6) = E11,
P7 = [6.6; 6.8) = S11,14.5, P8 = [6.8; 8.4] = S11,14.5,15,
P9 = (8.4; 9.8] = S14.5,15, P10 = (9.8, 10] = E15.

In two special cases we can explicitly give the locations of the equality regions
and switch regions.

Proposition 3.1. Let β > 1 and A = {a1, . . . , am} an allowable digit set. Then,
(i) if m = bβc + 1, then gj ≤ lj ≤ gj+1 for each j ∈ {1, . . . , m − 2}, i.e. the

greedy and lazy partition points alternate;

(ii) if bβc = 1 and m > 2, then gm−1 < l1, i.e. the last greedy partition point
is strictly smaller than the first lazy partition point.

Proof. For (i), since gj ≤ lj for all j, we only have to check that lj ≤ gj+1 for all
j ∈ {1, . . . , m− 2}. First observe that for j ∈ {1, . . . , m− 2} we have

aj+2 − aj = (am − a1)−
j−1∑

k=1

(ak+1 − ak)−
m−1∑

k=j+2

(ak+1 − ak).

By condition (3) we get

aj+2 − aj ≥ (am − a1)− (j − 1)
am − a1

β − 1
− (m− j − 2)

am − a1

β − 1

= [(β − 1)− (m− 3)]
am − a1

β − 1

≥ am − a1

β − 1
,

since m = bβc+ 1. So
aj+2 − aj

β
≥ am − a1

β − 1
− am − a1

β

and therefore also

lj =
am

β − 1
− am − aj

β
≤ a1

β − 1
+

aj+2 − a1

β
= gj+1.
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For (ii), just notice that β − 1 < 1, so that am − a1 <
am − a1

β − 1
. This means that

gm−1 =
a1

β − 1
+

am − a1

β
<

am

β − 1
− am − a1

β
= l1. ¤

Remark 3.1. Notice that, if the greedy partition points and lazy partition points
are all different, the first part of the proposition above implies that the equality
regions and switch regions alternate in the case m = bβc + 1. The second part of
the proposition states that, if bβc = 1 and m > 2, then we have only two equality
regions, namely Ea1 and Eam and all the other elements of the partition P are
switch regions (see Figure 4).

greedy
lazy
both
neither

Figure 4. On the left we have m = bβc + 1 and on the right we
have bβc = 1 and m > 2.

We have the following lemma.

Lemma 3.1. Suppose x ∈ Ja1,am can be written in the form x =
∞∑

i=1

bi

βi
, where

bi ∈ A for each i ≥ 1. One has
(a) If x ∈ Eaj , then b1 = aj.

(b) If x ∈ Saj ,...,aj+k
and x /∈ {lj : 1 ≤ j ≤ m− 1} ∩ {gj : 1 ≤ j ≤ m− 1}, then

b1 ∈ {aj , . . . , aj+k}.

(c) If x = lj = gj+k, then b1 ∈ {aj , . . . , aj+k+1}.
Proof. Since the proofs of the three statements are very similar, we will only prove
the first one. Suppose x ∈ Eaj and that b1 = a` < aj . Then j 6= 1, so the left
endpoint of Eaj is given by lj−1 and this point itself is not included in the interval.
Furthermore,

x ≤ a`

β
+

∞∑

i=2

am

βi
=

a`

β
+

am

β(β − 1)
=

am

β − 1
− am − a`

β
= l` ≤ lj−1,

contradicting the fact that x > lj−1. If on the other hand b1 = a` > aj , then
j 6= m. The right endpoint of Eaj is then given by gj , which itself is not included
in the interval. We have

x ≥ a`

β
+

∞∑

i=2

a1

βi
=

a`

β
+

a1

β(β − 1)
=

a1

β − 1
+

a` − a1

β
= g`−1 ≥ gj ,

which also yields a contradiction. Thus, b1 = aj . ¤
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Remark 3.2. Notice that in the above lemma, if x = lj = gj+k, and b1 = aj , then
bn = am for all n ≥ 2. Hence the given expansion is the lazy expansion. Similarly,
if b1 = aj+k+1, then bn = a1 for all n ≥ 2. In defining the partition P, we treat
these points as greedy partition points. As a consequence expansions ending in
aj , am, am, am, . . . cannot be generated dynamically in the system defined below,
but we can keep in mind that, if for some j, k we have gj+k = lj , then whenever we
see an expansion of the form

x =
k∑

i=1

bi

βi
+

aj+k+1

βk+1
+

∞∑

i=k+2

a1

βi
,

where bi ∈ A for each 1 ≤ i ≤ k, then the same element x, can also be written as

x =
k∑

i=1

bi

βi
+

aj

βk+1
+

∞∑

i=k+2

am

βi
.

This will ease the exposition.

We will now define a transformation generating the random β-expansions in the
following way. If an element x lies in an equality region, just assign the digit given
by the greedy transformation. To each of the switch regions, we assign a die with
an appropriate number of sides. For example, to the switch region Saj ,...,aj+k

we
assign a (k + 1)-sided die with the numbers j, . . . , j + k on it. If x lies in a switch
region, we throw the corresponding die and let the outcome determine the digit we
choose.

Suppose P contains Q switch regions. For each 1 ≤ q ≤ Q, if the q-th switch
region Sq is given by Saj ,...,aj+k

, let Aq = {aj , . . . , aj+k} and define the set Ω(q)

by Ω(q) = {j, . . . , j + k}N. Let each of the sets Ω(q) be equipped with the product
σ-algebra and let σ(q) be the left shift on Ω(q). Elements of Ω(q) indicate a series of
outcomes of the die associated with the region Sq and in this manner specify which
digit we choose, each time an element hits Sq. Let Ω =

∏Q
q=1 Ω(q) and define the

left shift on the q-th sequence by

σq : Ω → Ω : (ω(1), . . . , ω(Q)) 7→ (ω(1), . . . , ω(q−1), σ(q)(ω(q)), ω(q+1), . . . , ω(Q)).

On the set Ω× Ja1,am we define the function K = Kβ,A as follows:

K(ω, x) =





(ω, βx− d1(ω, x)), if x ∈ Eaj , j = 1, . . . , m,

(σq(ω), βx− d1(ω, x)), if x ∈ Sq, q = 1, . . . , Q,

where the sequence of digits {dn(ω, x)}n≥1 is given by

d1(ω, x) =





aj , if x ∈ Eaj , j = 1, . . . , m,

a
ω

(q)
1

, if x ∈ Sq, q = 1, . . . , Q,

and for n ≥ 2, dn(ω, x) = d1(Kn−1(ω, x)).
To see how iterations of K generate β-expansions, we let π : Ω × Ja1,am → Ja1,am

be the canonical projection onto the second coordinate. Then

π (Kn(ω, x)) = βnx− βn−1d1 − · · · − βdn−1 − dn,
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and rewriting yields

x =
d1

β
+

d2

β2
+ · · ·+ dn

βn
+

π (Kn(ω, x))
βn

.

Since π (Kn(ω, x)) ∈ Ja1,am
, it follows that

x−
n∑

i=1

di

βi
=

π2 (Kn(ω, x))
βn

→ 0 as n →∞.

This shows that for all ω ∈ Ω and for all x ∈ Ja1,am
one has that

x =
∞∑

i=1

di

βi
=

∞∑

i=1

di(ω, x)
βi

.

The random procedure just described shows that with each ω ∈ Ω corresponds an
algorithm that produces expansions in base β. Further, if we identify the point
(ω, x) with (ω, (d1(ω, x), d2(ω, x), . . .)), then the action of K on the second coordi-
nate corresponds to the left shift.

The following theorem states that all β-expansions of an element x can be gen-
erated, using a certain ω, except when x = lj = gj+k, then the lazy expansion of x
is not generated by K. As stated in Remark (3.2), we disregard this case.

Theorem 3.1. Suppose x ∈ Ja1,am can be written as x =
∞∑

i=1

bi

βi
, with bi ∈ A for

all i ≥ 1. Then there exists an ω ∈ Ω, such that bn = dn(ω, x) for all n ≥ 1.

Proof. This proof goes by induction on the number of digits of each ω(q), that

are determined. First, define the numbers {xn}n≥1 by xn =
∞∑

i=1

bi+n−1

βi
and for

q = 1, . . . , Q, let the set {l(q)n (x)}n≥1 be given by

l(q)n (x) =
n∑

i=1

1Sq (xi).

These numbers keep track of the number of times that the orbit of x hits the
corresponding switch region.

• If x ∈ Eai , then by Lemma 3.1 we know that b1 = ai. Then for all
1 ≤ j ≤ Q, l

(j)
1 (x) = 0. Set Ω1 = Ω.

• If x ∈ Sq, for some 1 ≤ q ≤ Q, then by Lemma 3.1 we have b1 = ai for
some ai ∈ Aq. We have l

(q)
1 (x) = 1 and for all j 6= q, l

(j)
1 (x) = 0. Set

Ω(q)
1 = {ω(q) ∈ Ω(q) : ω

(q)
1 = i} and for all j 6= q, set Ω(j)

1 = Ω(j). Let
Ω1 =

∏Q
j=1 Ω(j)

1 .

Then in all cases, for each 1 ≤ j ≤ Q, the set Ω(j)
1 is a cylinder set of length l

(j)
1 (x),

where by a cylinder set of length 0 we mean the whole space Ω(j). Furthermore,
b1 = d1(ω, x) for all ω ∈ Ω1. Now suppose we have obtained sets Ωn ⊆ . . . ⊆ Ω1,
so that for each 1 ≤ j ≤ Q, Ω(j)

n is a cylinder set of length l
(j)
n (x) and that for all

1 ≤ i ≤ n and all ω ∈ Ωi we have bi = di(ω, x).
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• If xn+1 ∈ Eai , then for all 1 ≤ j ≤ Q, l
(j)
n+1(x) = l

(j)
n (x) and for all ω ∈ Ωn,

bn+1 = ai = dn+1(ω, x). Therefore, set Ωn+1 = Ωn.

• If xn+1 ∈ Sq, then l
(q)
n+1(x) = l

(q)
n (x)+1 and for all j 6= q, l

(j)
n+1(x) = l

(j)
n (x).

By Lemma 3.1, bn+1 = ai for some ai ∈ Aq. Set Ω(q)
n+1 = {ω(q) ∈ Ω(q)

n :
ω

(q)
n+1 = i} and for all j 6= q, let Ω(j)

n+1 = Ω(j)
n . Set Ωn+1 =

∏Q
j=1 Ω(j)

n . Then
for each ω ∈ Ωn+1 we have bn+1 = dn+1(ω, x) = d1(Kn(ω, x)).

The above shows that for each 1 ≤ j ≤ Q, Ω(j)
n+1 is a cylinder set of length l

(j)
n+1(x)

and for all ω ∈ Ωn+1 we have for all 1 ≤ i ≤ n + 1 that bi = di(ω, x). If the
map K hits one of the switch regions infinitely many times, then l

(q)
n (x) → ∞

for the corresponding region and since all cylinder sets are compact, we know that⋂∞
n=1 Ω(q)

n in that case consists of one single point. In the other case the set {l(q)n (x) :
n ∈ N} is finite and

⋂∞
n=1 Ω(q)

n is exactly a cylinder set. In both cases,
⋂∞

n=1 Ω(q)
n is

non-empty and since this holds for each q, also the set
⋂∞

n=1 Ωn consists of at least
one element. Furthermore, the elements ω ∈ ⋂∞

n=1 Ωn satisfy the requirement of
the theorem. ¤

Remark 3.3. Notice that, if the sequence {xn} hits every switch region infinitely
many times, the above procedure leads to a unique ω. Otherwise one gets a cylinder
set or even the whole space in case x has a unique expansion, i.e. in case the orbit
of x only visits the equality regions.

In the last part, we construct an isomorphism that links this transformation K
to the uniform Bernoulli shift. Consider the probability space (AN,A, P ), where A
is the product σ-algebra on AN, and P is the uniform product measure. In case
lj = gj+k for some j, k, we remove from AN all sequences that eventually end in
aj , am, am, . . ., and we call the new set D. Let (D,D,P) be the probability space
obtained from (AN,A, P ), by restricting it to D and let σ′ be the left shift on D. Let
F×B, be the product σ-algebra on Ω×Ja1,am where F is the product σ-algebra on
Ω and B is the Borel σ-algebra on Ja1,am . Define the function φ : Ω× Ja1,am → D
by

φ(ω, x) = (d1(ω, x), d2(ω, x), . . .).

Then φ is measurable, φ ◦K = σ′ ◦ φ and Theorem 3.1 states that φ is surjective.
We will indicate a subset of Ω× Ja1,am on which φ is invertible. For 1 ≤ q ≤ Q, let

Zq = {(ω, x) ∈ Ω× Ja1,am : π(Kn(ω, x)) ∈ Sq i.o.},
Dq = {(b1, b2, . . .) ∈ D :

∞∑

i=1

bj+i−1

βi
∈ Sq for infinitely many j’s},

and define the sets Z =
⋂Q

q=1 Zq and D∗ =
⋂Q

q=1 Dq. It is clear that φ(Z) = D∗,
K−1(Z) = Z and (σ′)−1(D∗) = D∗. Let φ∗ be the restriction of φ to Z. The next
lemma states that φ∗ is a bijection.

Lemma 3.2. The map φ∗ : Z → D∗ is a bimeasurable bijection.
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Proof. Let the sequence (b1, b2, . . .) be an element of D∗ and define for each 1 ≤
q ≤ Q sequence {r(q)

i }i≥1 recursively:

r
(q)
1 = min{j ≥ 1 :

∞∑
n=1

bj+n−1

βn
∈ Sq},

r
(q)
i = min{j > ri−1 :

∞∑
n=1

bj+n−1

βn
∈ Sq}.

By Lemma 3.1, we know that b
r
(q)
i

= a` ∈ Aq. Set ω
(q)
i = `. Take ω = (ω(1), . . . , ω(Q))

and define (φ∗)−1 : D∗ → Z by

(φ∗)−1((b1, b2, . . .)) =

(
ω,

∞∑

i=1

bi

βi

)
.

We can easily check that (φ∗)−1 is measurable and is the inverse of φ∗. ¤

Lemma 3.3. P(D∗) = 1.

Proof. Fix q. We know that if the q-th switch region is given by Sq = Saj ,...,aj+k
,

then it is bounded on the left by max{gj+k−1, lj−1} and on the right by min{gj+k, lj}.
Let x = max{gj+k−1, lj−1} be the left endpoint of Sq and suppose that the greedy
expansion of x is given by

x =
∞∑

i=1

di

βi
,

with di ∈ A for all i ≥ 1. Notice that di 6= am for infinitely many i. Let

0 < δ < min{gj+k − x, lj − x}
and choose ` sufficiently large, such that

(i)
∞∑

i=`

am

βi
< δ and

(ii) d` 6= am.
Let (b1, b2, . . .) ∈ D be an arbitrary sequence of digits and set

x` =
`−1∑

i=1

di

βi
+

am

β`
+

∞∑

i=`+1

bi−`

βi
.

Since, by the definition of the greedy expansion, d` is the largest element of A such
that

∑̀

i=1

di

βi
+

∞∑

i=`+1

a1

βi
≤ x,

we have

x` ≥
`−1∑

i=1

di

βi
+

am

β`
+

∞∑

i=`+1

a1

βi
> x.

Also,

x` ≤
`−1∑

i=1

di

βi
+

am

β`
+

∞∑

i=`+1

am

βi
< x + δ < min{gj+k, lj}.



RANDOM β-EXPANSIONS WITH DELETED DIGITS 17

So, x` ∈ Sq. Define the set

D∗
q = {(b1, b2, . . .) ∈ AN : bj , . . . , bj+`−1 = d1, . . . , d`−1, am for infinitely many j’s}.

By the second Borel-Cantelli Lemma, P(D∗
q ) = 1 and since obviously D∗

q ⊆ Dq,
also P(Dq) = 1. This holds for all q ∈ {1, . . . , Q}, so we have P(D∗) = 1. ¤

Using the product measure P, we can define the K-invariant measure ν on F × B,
by setting

ν(A) = P(φ(Z ∩A)).
As a direct consequence of Lemmas 3.2 and 3.3, we have the following theorem.

Theorem 3.2. Let β > 1 and suppose A = {a1, . . . , am} is an allowable digit set.
The dynamical systems (Ω × Ja1,am

,F × B, ν,K) and (D,D,P, σ′) are measurably
isomorphic.

As an immediate consequence of the isomorphism between the two dynamical
systems, we have the following corollary about the entropy of K.

Corollary 3.1. The entropy of the transformation K with respect to the measure
ν is given by

hν(K) = log m.

Remark 3.4. Let M be the family of measures µ defined on (D,D), that are shift
invariant and have µ(D∗) = 1. Then for each µ ∈M we can define the measure νµ

on (Ω× Ja1,am ,F × B) by

νµ(A) = µ(φ(A ∩ Z)).

It is clear that νµ is K-invariant and that if νµ 6= P, then

hνµ(K) < log m.

We are interested in identifying the projection of the measure ν on the second
coordinate, namely the measure ν ◦ π−1 defined on Ja1,am To do so, we consider
the purely discrete measures {δi}i≥1 defined on R as follows:

δi({a1β
−i}) =

1
m

, . . . , δi({amβ−i}) =
1
m

.

Let δ be the corresponding infinite Bernoulli convolution,

δ = lim
n→∞

δ1 ∗ . . . ∗ δn.

Proposition 3.2. ν ◦ π−1 = δ.

Proof. Let h : D → Ja1,am be given by h(y) =
∞∑

i=1

yi

βi
, where y = (y1, y2, . . .).

Then, π = h ◦φ, and δ = P ◦h−1. Since P = ν ◦φ−1, it follows that νβ ◦π−1 = δ. ¤

If β ∈ (1, 2) and A = {0, 1}, then δ is an Erdös measure on [0, 1
β−1 ], and lots of

things are already known. For example, if β is a Pisot number, then δ is singular
with respect to Lebesgue measure; [E1, E2, S]. Further, for almost all β ∈ (1, 2)
the measure δ is equivalent to Lebesgue measure; [So, MS]. There are many gener-
alizations of these results to the case of an arbitrary digit set (see [PSS] for more
references and results).
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Final Remarks.

(i) Instead of assigning a different die to each of the switch regions, we can also use
the same m-sided die for each switch region and only consider the outcomes that
are meaningful. We will define the dynamical system that generates the random
β-expansions with deleted digits in this way. It can be shown that this system
is isomorphic to the Bernoulli shift on A and hence also to the system described
above.

Let the partition P be constructed as before. Let Ω̄ = {1, . . . , m}N and let σ
be the left shift. Elements of Ω̄ now indicate a series of outcomes of our m-sided
die and thus specify which transformation we choose. We first define the function
K̄ : Ω̄× Ja1,am

→ Ω̄× Ja1,am
by

K̄(ω̄, x) =





(ω̄, βx− aj) if x ∈ Eaj
,

(σ(ω̄), βx− aω̄1) if x ∈ Saj ,...,aj+k
and ω̄1 ∈ {j, . . . , j + k},

(σ(ω̄), x) if x ∈ Saj ,...,aj+k
and ω̄1 6∈ {j, . . . , j + k}.

Define the set S∗ by

S∗ =
m−1⋃

j=1

m−j⋃

k=1

{{ω̄} × Saj ,...,aj+k
: ω̄1 6∈ {j, . . . , j + k}}.

Let X = Ω̄× Ja1,am \ S∗ and X∗ =
∞⋂

n=0

K̄−n(X). Consider the restriction of K̄ to

this set X∗ and call it R = Rβ , that is

R : X∗ → X∗ : (ω̄, x) 7→ K̄(ω̄, x).

Notice that the set X∗ only contains those combinations of ω̄’s and x’s that yield
‘valid’ choices at every moment the die is thrown.

Let the dynamical system (D,D,P, σ′) be as before. Let F̄ be the product
σ-algebra on Ω̄ and let B again be the Borel σ-algebra on Ja1,am . Define

X = {A ∩X∗ : A ∈ F̄ × B}.

Then, by defining the sequence of digits {d̄n}n≥1 and the function φ̄ as we have
done before, we can prove Theorem 3.1, Lemma 3.2 and Lemma 3.3 by only making
slight adjustments to the proofs. If we also define the R-invariant measure ν̄ in a
similar way, then we have shown that the system (X∗,X , ν̄, R) is isomorphic to
(D,D,P, σ′).

(ii) We have established a measurable isomorphism between the dynamical sys-
tems (Ω× Ja1,am ,F × B, ν, K), (X∗,X , ν̄, R) and (D,D,P, σ′), but still know very
little about the measures ν and ν̄. An interesting question would be, whether or not
these measures are measures of maximal entropy and if so, if they are the unique
measures with this property. Another point of interest would be to find a measure,
whose projection onto the second coordinate is equivalent to Lebesgue measure.
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