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Abstract

The dominant poles of a transfer function are specific eigenvalues of the state space matrix
of the corresponding dynamical system. In this paper, two methods for the computation of
the dominant poles of a large scale transfer function are studied: two-sided Rayleigh Quotient
Iteration (RQI) and the Dominant Pole Algorithm (DPA). Firstly, a local convergence analysis
of DPA will be given, and the local convergence neighborhoods of the dominant poles will be
characterized for both methods. Secondly, theoretical and numerical results will be presented
that indicate that for DPA the basins of attraction of the dominant pole are larger than for
two-sided RQI. The price for the better global convergence is only a few additional iterations,
due to the asymptotically quadratic rate of convergence of DPA, against the cubic rate of
two-sided RQI.

1 Introduction

The transfer function of a large scale dynamical system often only has a small number of dominant
poles compared to the number of state variables. The dominant behavior of the system can be
captured by projecting the state space on the subspace spanned by the eigenvectors corresponding
to the dominant poles. This type of model reduction is known as modal approximation, see for
instance [23]. The computation of the dominant poles, that are specific eigenvalues of the system
matrix, and the corresponding modes, requires specialized eigenvalue methods.

In [10] Newton’s method is used to compute a dominant pole of single input single output
(SISO) transfer function: the Dominant Pole Algorithm (DPA). In two recent publications this
algorithm is improved and extended to a robust and efficient method for the computation of the
dominant poles, modes and modal approximates of large scale SISO [17] and MIMO transfer
functions [16].

This paper is concerned with the convergence behavior of DPA. Firstly, DPA will be related to
two-sided or generalized Rayleigh quotient iteration [13, 15]. A local convergence analysis will be
given, showing the asymptotically quadratic rate of convergence. Furthermore, for systems with
a symmetric state-space matrix, a characterization of the local convergence neighborhood of the
dominant pole will be presented for both DPA and RQI. The results presented in this paper are
sharper than the results by Ostrowski [12, 13] and Beattie and Fox [4]. Secondly, theoretical and
numerical results indicate that for DPA the basins of attraction of the most dominant poles are
larger than for two-sided RQI. In practice, the asymptotically quadratic (DPA) instead of cubic
rate (two-sided RQI) of convergence costs about two or three iterations.

The outline of this paper is as follows. Definitions and properties of transfer functions and
dominant poles, and further motivation are given in section 2. The Dominant Pole Algorithm and
its relation to two-sided Rayleigh quotient iteration are discussed in section 3. In section 4 the
local convergence of DPA is analyzed. The basins of attraction of DPA and two-sided RQI are
studied in section 5. Section 6 concludes.

∗Mathematical Institute, Utrecht University, POBox 80010, 3508 TA, Utrecht, The Netherlands,
http://www.math.uu.nl/people/rommes, rommes@math.uu.nl
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2 Transfer functions, poles, and zeros

The motivation for this paper comes from dynamical systems (E,A,b, c, d) of the form{
Eẋ(t) = Ax(t) + bu(t)
y(t) = c∗x(t) + du(t), (1)

where A,E ∈ Rn×n, E may be singular, b, c,x(t) ∈ Rn, u(t), y(t), d ∈ R. The vectors b and c
are called the input, and output vector, respectively. The transfer function H : C −→ C of (1) is
defined as

H(s) = c∗(sE −A)−1b + d. (2)

The poles of transfer function (2) are a subset of the eigenvalues λi ∈ C of the matrix pencil
(A,E). An eigentriplet (λi,vi,wi) is composed of an eigenvalue λi of (A,E) and corresponding
right and left eigenvectors vi,wi ∈ Cn (identified by their components in b and c):

Avi = λiEvi, vi 6= 0,
w∗

i A = λiw∗
i E, wi 6= 0.

Assuming that the pencil is non-defective, the right and left eigenvectors corresponding to finite
eigenvalues can be scaled so that w∗

i Evi = 1. Furthermore, it is well known that left and right
eigenvectors corresponding to distinct eigenvalues are E-orthogonal: w∗

i Evj = 0 for i 6= j. The
transfer function H(s) can be expressed as a sum of residues Ri ∈ C over the ñ ≤ n finite first
order poles [9]:

H(s) =
ñ∑

i=1

Ri

s− λi
+ R∞ + d, (3)

where the residues Ri are
Ri = (c∗vi)(w∗

i b),

and R∞ is the constant contribution of the poles at infinity (often zero).
Although there are different indices of modal dominance [2, 7, 17, 23], the following will be

used in this paper.

Definition 2.1. A pole λi of H(s) with corresponding right and left eigenvectors vi and wi

(w∗
i Evi = 1) is called the dominant pole if |Ri| > |Rj |, for all j 6= i.

More generally, a pole λi is called dominant if |Ri| is not very small compared to |Rj |, for
all j 6= i. A dominant pole is well observable and controllable in the transfer function. This can
also be seen in the corresponding Bode-plot (see fig. 1), which is a plot of |H(iω)| against ω ∈ R:
peaks occur at frequencies ω close to the imaginary parts of the dominant poles of H(s). An
approximation of H(s) that consists of k < n terms with |Rj | above some value, determines the
effective transfer function behavior [19] and is also known as transfer function modal equivalent:

Hk(s) =
k∑

j=1

Rj

s− λj
+ d.

The dominant poles are specific (complex) eigenvalues of the pencil (A,E) and usually form a
small subset of the spectrum of (A,E). They can be located anywhere in the spectrum, see also
figure 1. The two algorithms to compute poles (eigenvalues) that will be discussed in this paper,
the Dominant Pole Algorithm (DPA) and two-sided Rayleigh Quotient Iteration (two-sided RQI),
both start with an initial shift s0, but behave notably differently: as can be seen in figure 1, DPA
converges to the most dominant pole for many more initial shifts than two-sided RQI (marked by
circles and x-es, respectively). In section 5 more of such figures will be presented and for all figures
it holds: the more circles (compared to x-es), the better the performance of DPA over two-sided
RQI. The typical behavior of DPA will be discussed in more detail in sections 4 and 5.

Since the dominance of a pole is independent of d, without loss of generality d = 0 in the
following.
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Figure 1: The left figure shows the Bode plot of the transfer function (n = 66 states) of the New
England test system [10], together with the Bode plot of the k = 11th order modal equivalent,
constructed by projecting the system onto the modes of the 6 most dominant poles, which may
belong to complex conjugated pairs. The right figure shows part of the pole spectrum together
with the initial shifts for which DPA (marked by circles) and two-sided RQI (x-es) converge to
the most dominant pole λ = −0.467± 8.96i.

3 The Dominant Pole Algorithm (DPA)

The poles of transfer function (2) are the λ ∈ C for which lims→λ |H(s)| = ∞. Consider now the
function G : C −→ C

G(s) =
1

H(s)
.

For a pole λ of H(s), lims→λ G(s) = 0. In other words, the poles are the roots of G(s) and a good
candidate to find these roots is Newton’s method. This idea is the basis of the Dominant Pole
Algorithm (DPA) [10] (and can be generalized to MIMO systems as well, see [11, 16]).

The derivative of G(s) with respect to s is given by

G′(s) = −H ′(s)
H2(s)

. (4)

The derivative of H(s) with respect to s is

H ′(s) = −c∗(sE −A)−1E(sE −A)−1b. (5)

Equations (4) and (5) lead to the following Newton scheme:

sk+1 = sk −
G(sk)
G′(sk)

= sk +
1

H(sk)
H2(sk)
H ′(sk)

= sk −
c∗(skE −A)−1b

c∗(skE −A)−1E(skE −A)−1b
, (6)

The formula (6) was originally derived in [5]. Using xk = (skE−A)−1b and yk = (skE−A)−∗c, the
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Newton update (6) can also be written as the generalized two-sided Rayleigh quotient ρ(xk,yk):

sk+1 = sk −
c∗(skE −A)−1b

c∗(skE −A)−1E(skE −A)−1b

=
c∗(skE −A)−1A(skE −A)−1b
c∗(skE −A)−1E(skE −A)−1b

.

=
y∗kAxk

y∗kExk
.

An implementation of this Newton scheme is represented in Alg. 1. It is also known as the
Dominant Pole Algorithm [10].

Algorithm 1 The Dominant Pole Algorithm (DPA).
INPUT: System (E,A,b, c), initial pole estimate s0, tolerance ε � 1
OUTPUT: Dominant pole λ and corresponding right and left eigenvectors v and w
1: Set k = 0
2: while not converged do
3: Solve xk ∈ Cn from (skE −A)xk = b
4: Solve yk ∈ Cn from (skE −A)∗yk = c
5: Compute the new pole estimate

sk+1 = sk −
c∗xk

y∗kExk
=

y∗kAxk

y∗kExk

6: The pole λ = sk+1 with v = xk and w = yk has converged if

||Axk − sk+1Exk||2 < ε

7: Set k = k + 1
8: end while

The two linear systems that need to be solved in step 3 and 4 of Alg. 1 can be efficiently solved
using one LU -factorization LU = skE − A, by noting that U∗L∗ = (skE − A)∗. In this paper
it will be assumed that an exact LU -factorization is available, although this may not always be
the case for real-life examples, depending on the size and condition of the system. If an exact
LU -factorization is not available, one has to use inexact Newton schemes, such as inexact Rayleigh
Quotient Iteration and Jacobi-Davidson style methods [18, 8, 20], a topic that is subject to ongoing
research.

3.1 DPA and two-sided Rayleigh quotient iteration

The generalized two-sided Rayleigh quotient iteration is defined as follows:

Definition 3.1. The generalized two-sided Rayleigh quotient ρ(x,y) is given by [13, 15] ρ(x,y) ≡
ρ(x,y, A, E) ≡ y∗Ax/y∗Ex, provided y∗Ex 6= 0.

The two-sided Rayleigh quotient iteration [13, 15] is shown in Alg. 2. The only difference with
DPA is that the right hand sides in step 3 and 4 of Alg. 1 are kept fixed, while the right hand
sides in step 4 and 5 of Alg. 2 are updated every iteration.

While the use of the fixed right hand sides drops the asymptotic convergence rate from cubic to
quadratic, it is exactly this use of fixed right hand sides that causes the typical better convergence
to dominant poles, as will be shown later. In that light the quadratic instead of cubic local
convergence, that in practice only makes a small difference in the number of iterations, is even
more acceptable. Moreover, based on techniques in [4, 21] one can switch from DPA to two-sided
RQI in the final phase of the process, to save some iterations. However, such techniques are not
considered in this paper, since the primary goal is to study the convergence behavior.
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Algorithm 2 Two-sided Rayleigh quotient iteration.
INPUT: System (E,A,b, c), initial pole estimate s0, tolerance ε � 1
OUTPUT: Pole λ and corresponding right and left eigenvectors v and w
1: x0 = (s0E −A)−1b, y0 = (s0E −A)−∗c, and s1 = ρ(x0,y0)
2: Set k = 1
3: while not converged do
4: Solve xk ∈ Cn from (skE −A)xk = Exk−1/||xk−1||2
5: Solve yk ∈ Cn from (skE −A)∗yk = E∗yk−1/||yk−1||2
6: Compute the new pole estimate

sk+1 = ρ(xk,yk) =
y∗kAxk

y∗kExk

7: The pole λ = sk+1 has converged if

||Axk − sk+1Exk||2 < ε

8: Set k = k + 1
9: end while

4 Local convergence analysis

The generalized two-sided Rayleigh quotient (Def. 3.1) has some well known basic properties, see
[13, 15]:

• Homogeneity: ρ(αx, βy, γA, δE) = (γ/δ)ρ(x,y, A, E) for α, β, γ, δ 6= 0.

• Translation Invariance: ρ(x,y, A− αE, E) = ρ(x,y, A, E)− α.

• Stationarity (all directional derivatives are zero): ρ = ρ(x,y, A, E) is stationary if and only
if x and y are right and left eigenvectors of (A,E), respectively, with eigenvalue ρ and
y∗Ex 6= 0.

4.1 Asymptotically quadratic rate of convergence

In [15, p. 689] it is proved that the asymptotic convergence rate of two-sided RQI is cubic for non-
defective matrices. Along the same lines it can be shown that the asymptotic convergence rate of
DPA is quadratic. For the eigenvalue, this also follows from the fact that DPA is an exact Newton
method, but for the corresponding left and right eigenvectors the following lemma is needed, gives
a useful expression for (ρk+1 − λ) (using sk ≡ ρk ≡ ρ(xk,yk, A, E) from now on).

Lemma 4.1. Let v and w be right and left eigenvectors of (A,E) with eigenvalue λ, i.e. (A −
λE)v = 0 and w∗(A − λE) = 0, and w∗Ev = 1. Let τk, ωk ∈ C be scaling factors so that the
solutions xk and yk of

(ρkE −A)xk = τkb and (ρkE −A)∗yk = ωkc (7)

are of the form

xk = v + dk and yk = w + ek, (8)

where w∗Edk = e∗kEv = 0. Then with u ≡ (I − Evw∗) b
w∗b and z ≡ (I − E∗wv∗) c

v∗c , it follows
that

u = (ρk − λ)−1(ρkE −A)dk ⊥ w and z = (ρk − λ)−∗(ρkE −A)∗ek ⊥ v,
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and with ρk+1 = y∗kAxk/(y∗kExk), one has that

ρk+1 − λ = (ρk − λ)µ, where µ =
e∗ku + e∗kEdk

1 + e∗kEdk
. (9)

Note that u and z do not change during the iteration.

Proof. Substitution of (8) into (7) and multiplication from the left by w∗ and v∗, respectively,
gives

τk =
ρk − λ

w∗b
and ωk =

(ρk − λ)∗

v∗c
.

It follows that

(ρkE −A)dk = (ρk − λ)(I − Evw∗)
b

w∗b
≡ (ρk − λ)u ⊥ w

and

(ρkE −A)∗ek = (ρk − λ)∗(I − E∗wv∗)
c

v∗c
≡ (ρk − λ)∗z ⊥ v,

where u and z are independent of the iteration. With ρk+1 = y∗kAxk/(y∗kExk), it follows that

ρk+1 − λ =
y∗k(A− λE)xk

y∗kExk
=

e∗k(A− λE)dk

1 + e∗kEdk
.

Note that e∗k(A − λE)dk = e∗k(A − ρkE)dk + (ρk − λ)e∗kEdk = (ρk − λ)(e∗ku + e∗kEdk), which
shows (9).

Theorem 4.2. Let v and w be right and left eigenvectors of (A,E) with eigenvalue λ, i.e. (A−
λE)v = 0 and w∗(A−λE) = 0, and w∗Ev = 1. Then limk→∞ xk = v and limk→∞ yk = w if and
only if sk+1 = ρk = ρ(xk,yk) approaches λ, and the convergence rate is asymptotically quadratic.

Proof. The proof is an adaptation of the proofs in [15, p. 689] and [8, p. 150]. The main difference
here is that for DPA the right hand-sides of the linear systems are kept fixed during the iterations.
Let the iterates xk and yk, see lemma 4.1, be of the form

xk = v + dk and yk = w + ek,

where w∗Edk = e∗kEv = 0 and w∗Ev = 1. Put dk = (ρk − λ)d̃k with (ρkE − A)d̃k = u, and
ek = (ρk − λ)∗ẽk with (ρkE − A)∗ẽk = z. Since (λE − A)−1 : w⊥ → (E∗w)⊥ is bounded on w⊥

and (λE −A)−∗ : v⊥ → (Ev)⊥ is bounded on v⊥, it follows that as ρk → λ, then

||dk|| = ||(ρk − λ)(ρkE −A)−1u|| = |ρk − λ|||((λE −A)|(E∗w)⊥)−1||||u||+ O((ρk − λ)2), (10)

and similarly

||ek|| = ||(ρk − λ)∗(ρkE −A)−∗z|| = |ρk − λ|||((λE −A)|(Ev)⊥)−∗||||z||+ O((ρk − λ)2), (11)

and dk and ek, and d̃k and ẽk, are bounded. Hence, ρk → λ if and only if xk → v and yk → w.
To prove the asymptotically quadratic rate of convergence, first note that

ρk+1 − λ = ρ(xk,yk) = (ρk − λ)2
ẽ∗k(A− λE)d̃k

1 + (ρk − λ)2ẽ∗kEd̃k

,

and hence
|ρk+1 − λ| = (ρk − λ)2|ẽ∗k(A− λE)d̃k|+ O((ρk − λ)4). (12)
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Let κ(A|x⊥) denote the condition number of A restricted to x⊥. By (10) and (12), it follows that
as k →∞, then

||v − xk+1|| = ||(ρk+1 − λ)d̃k+1||
≤ |ρk − λ|2||d̃k||||ẽk||(κ((A− λE)|(E∗w)⊥)||u||) + O((ρk − λ)3),

and similarly, by (11) and (12),

||w − yk+1|| = ||(ρk+1 − λ)ẽk+1||
≤ |ρk − λ|2||ẽk||||d̃k||(κ((A− λE)|(Ev)⊥)||z||) + O((ρk − λ)3),

which proves the asymptotically quadratic convergence.

4.2 Convergence neighborhood

In this section it will be assumed that A is a symmetric matrix. In [12] Ostrowski characterizes
the convergence neighborhood of the iteration

(A− ρkI)xk = τkb, k = 0, 1, . . . , (13)

for symmetric matrices A, where ρ0 arbitrary, ρk+1 = ρ(A,xk) (k > 0) and τk is a scalar so that
||xk||2 = 1. It can be seen that DPA for symmetric matrices (with E = I, b = c),

(ρkI −A)xk = τkb, k = 0, 1, . . . , (14)

is similar and hence Ostrowski’s approach can be used to characterize the local convergence neigh-
borhood of DPA for symmetric matrices A with c = b = (b1, . . . , bn)T . In fact, a larger convergence
neighborhood of DPA will be derived here. This result gives insight in the typical convergence
behavior of DPA.

Since the two-sided Rayleigh quotient and (13, 14) are invariant under unitary similarity trans-
forms, without loss of generality A will be a diagonal matrix diag(λ1, . . . , λn) with λ1 < . . . < λn.
Note that Rj = b2

j and the λj with j = argmaxj(b2
j ) is the dominant pole. The main results of

this paper, sharp bounds for the convergence neighborhoods of DPA and RQI, respectively, are
stated in theorem 4.3 and theorem 4.4, respectively. The proofs are given in section 4.2.1.

Theorem 4.3. Let (λ,v) be an eigenpair of A. In the DPA iteration for A and b with initial
shift ρ0, let xk and τk be such that

||xk|| = 1, (ρkI −A)xk = τkb, with ρk+1 ≡ x∗kAxk, (k ≥ 0),

and put γ = minλi 6=λ |λi − λ|. If

αdpa ≡
|ρ0 − λ|

γ
≤ 1

1 + ζ2
with ζ ≡ tan∠(v,b), (15)

then, with c ≡ cos ∠(v,b), it follows that

ρk → λ and
|ρk+1 − λ|

c2γ
≤

(
|ρk − λ|

c2γ

)2

(k ≥ 0).

The bound given by Ostrowski [12, p. 235 (eqn. (19))] is

|ρk − λ| < γ

2
min(

b2

2(1− b2)
, 1),

and it is clear that the neighborhood in theorem 4.3 is larger.
In [12, p. 239] also the convergence neighborhood of standard RQI,

(A− ρkI)xk = τkxk−1, k = 0, 1, . . . (16)

where x−1 arbitrary, ρk+1 = ρ(A,xk) (k > 0) and τk is a scalar so that ||xk||2 = 1, is derived.
Here a sharper bound is derived.
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Figure 2: Bounds of the local convergence neighborhood for DPA (dashed) and best-case RQI
(solid). If |λj − ρk| < αγ, with γ = mini 6=j |λi − λj |, there is convergence to λj .

Theorem 4.4. Let (λ,v) be an eigenpair of A. In the RQI iteration for A and b with initial shift
ρ0 and x−1 = b, let xk and τk be such that

||xk|| = 1, (ρkI −A)xk = τkxk−1, with ρk+1 ≡ x∗kAxk, (k ≥ 0),

and put γ = minλi 6=λ |λi − λ|. If

αrqi ≡
|ρ0 − λ|

γ
≤ 1

1 + ζ
with ζ ≡ tan∠(v,b), (17)

then |ρ1 − λ| < γ/2, and

ρk → λ and
|ρk+1 − λ|

γ − |ρk+1 − λ|
≤

(
|ρk − λ|

γ − |ρk − λ|

)2

(k > 0).

In particular, the results of theorem 4.3 and 4.4 are sharp in the sense that if, in the two-
dimensional case, condition (15) (condition (17)) is not fulfilled for λ1, then it is fulfilled for λ2.
This follows from the fact that if α

(1)
0 = |ρ0 − λ1|/γ, then α

(2)
0 = 1− α

(1)
0 , and ζ

(1)
0 = 1/ζ

(2)
0 .

In [4][Thm. 1] it is shown that, with γb = β−α a known gap in the spectrum of A (for instance,
γ = minλi 6=λ |λ − λi|), if ρ1 < (α + β)/2 and ||r1|| = ||Ax0 − ρ1x0|| ≤ γb, then ρk < (α + β)/2
for k ≥ 1, and similarly for the case ρ1 > (α + β)/2. It can be shown that the conditions of this
theorem imply the second step of theorem 4.4. On the other hand, the conditions of theorem 4.4
do not imply the conditions of [4][Thm. 1]. To see this, consider the two-dimensional example
A = diag(−1, 1). With ρ0 = 0.01, x−1 = b = [

√
2/2,

√
2/2] and x0 = (A − ρ0I)−1x−1, it follows

that |λ − ρ0| < 1 and condition (17) is satisfied, while ||r1|| = ||Ax0 − ρ1x0|| ≈ 1.03 > 1. Hence,
the result in theorem 4.4 is sharper.

In figure 2, αdpa and αrqi, see equations (15) and (17), respectively, are plotted for 0 < b2
j < 1,

||b||2 = 1. As b2
j increases, i.e. as mode j becomes more dominant, both local convergence

neighborhoods increase and α → 1, while the bound for the DPA neighborhood is larger for
b2 > 1/2, or ∠(v,b) < 45◦.

The price one has to pay for the cubic convergence, is the smaller local convergence neighbor-
hood of the dominant pole, as it becomes more dominant, for RQI. While DPA emphasizes the
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dominant mode every iteration by keeping the right hand-side fixed, RQI only takes advantage
of this in the first iteration, and for initial shifts too far from the dominant pole, the dominant
mode may be damped out from the iterates xk. In that sense, RQI is closer to the inverse power
method or inverse iteration, which converges to the eigenvalue closest to the shift, while DPA
takes advantage of the information in the right hand-side b.

Because the results are in fact lower bounds for the local convergence neighborhood, theoreti-
cally speaking no conclusions can be drawn about the global basins of attraction. But the results
strengthen the intuition that for DPA the basin of attraction of the dominant pole is larger than
for RQI.

4.2.1 Proofs of theorem 4.3 and theorem 4.4

The following two lemmas provide expressions and bounds that are needed for the proofs of
theorem 4.3 and theorem 4.4.

Lemma 4.5. Let v be an eigenvector of A = AT with eigenvalue λ with ||v|| = 1, and let τk ∈ R
be a scaling factor so that the solution xk of

(ρkI −A)xk = τkb

is of the form
xk = v + dk, (18)

where v∗dk = 0, and let z = (ρkE −A)dk. Then ρk+1 = x∗kAxk/(x∗kxk) satisfies

ρk+1 − λ = (ρk − λ)µ,

where
µ =

d∗kz + d∗kdk

1 + d∗kdk
. (19)

Proof. The result follows from lemma 4.1, by noting that A = AT and E = I.

Lemma 4.6. Under the assumptions of lemma 4.5, put γ = minλi 6=λ |λi − λ|, c = cos ∠(v,b),
ζ = ||z||, αk = |ρk−λ|

γ , and α̃k = αk/(1− αk). The following statements hold:

ζk+1 ≡ ||dk|| ≤
αk

1− αk
ζ. (20)

If αk ≤ c = 1/
√

1 + ζ2, then

|µ| ≤ α̃k + α̃2
k

1 + α̃2
kζ2

ζ2 =
αkζ2

(1− αk)2 + α2
kζ2

, (21)

|µ| ≤ 1 if α̃kζ2 ⇔ αk ≤
1

1 + ζ2
= c2, (22)

αk+1 ≤ αk|µ| ≤ α2
k(1 + ζ2), (23)

and α̃k+1 ≡
αk+1

1− αk+1
≤ (α̃kζ)2. (24)

Proof. Put ζk = ||dk||. Then by (19)

|µ| ≤ φ(ζk) where φ(τ) ≡ ζτ + τ2

1 + τ2
(τ ∈ R).

The function φ is increasing on [0, τmax], where τmax = (1+
√

1 + ζ2)/ζ, or, using c ≡ cos ∠(v,b) =
1/

√
1 + ζ2, τmax =

√
(1 + c)/(1− c), and 0 ≤ φ ≤ 1+c

2c on (0,∞).
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Since ||(A− ρk)−1|v⊥ || ≤ |1/(γ − |λ− ρk|)|, it follows that

ζk ≡ ||dk|| ≤ |ρk − λ| · ||(A− ρk)−1|v⊥ || · ||z|| ≤
|ρk − λ|

|γ − |ρk − λ||
=

α

1− α
ζ,

which proves (20). Statement (21) now follows from the observation that αkζ/(1 − α) ≤ τmax if
and only if αk ≤ 1/

√
1 + ζ2 = c. Statement (22) follows readily from statement (20) and the

definition α̃k = αk/(1− αk).
For statement (23), first note that (1−αk)2 + α2

kζ2 ≥ ζ2/(1 + ζ2) for all αk ≥ 0, and therefore
|µ| ≤ αk(1 + ζ2). Hence, with αk+1 ≡ |ρk+1 − λ|/γ, inequality (23) follows by (19).

Finally, statement (24) follows the fact that (21) and (24) imply αk+1 ≤ (α̃kζ)2/(1 + (α̃kζ)2).

Note that it is essential that the function φ is increasing, since this allows to use upper bound
(20) also to handle the denominator in (19), leading to (21).

In the two-dimensional case, the estimate in (21) is sharp (equality), since both z and dk are in
the same direction (orthogonal to v). Furthermore, in statement 2, |µ| ≤ 1 if and only if α̃kζ2 ≤ 1.

Proof of theorem 4.3. Note that ζ is the same in all iterations, and recall that αk ≡ |ρk − λ|/γ.
Since c2 = 1/(1 + ζ2), condition (15) implies α0(1 + ζ2) < 1, and by induction and (23) of lemma
4.6, αk

√
1 + ζ2 ≤ αk(1 + ζ2) < 1. Again by (23) of lemma 4.6, it follows that

αk+1(1 + ζ2) ≤ (αk(1 + ζ2))2,

which implies the quadratic convergence.

Note that result (24) implies α̃k+1ζ
2 ≤ (α̃kζ2)2, which guarantees quadratic convergence as

soon as α̃0ζ
2 < 1. This condition is equivalent to α0 < 1/(1 + ζ2), the condition (15) of the

theorem.

Proof of theorem 4.4. Note that ζk = tan ∠(v,xk) changes every iteration, and recall that αk ≡
|ρk−λ|/γ, and α̃k = αk/(1−αk). Condition (17) implies α0 < 1/(1+ζ), or, equivalently, α̃0ζ0 < 1.
By (24) it follows that α1 < 1/2, or, equivalently, |ρ1 − λ| < γ/2. Since α̃kζk < 1 implies that
αk < 1/

√
1 + ζ2

k , results (20) and (24) of lemma 4.6 can be applied to obtain

α̃k+1 ≤ (α̃kζk)2 and ζk+1 ≤ α̃kζk,

if α̃kζk < 1. It follows that ζk+2 ≤ α̃k+1ζk+1 ≤ (α̃kζk)3 < 1. Therefore, since α̃0ζ0 < 1, the
sequences (α̃k) and (ζk) converge dominated cubically, and, for k > 0, α̃k+1 ≤ α̃2

k.

4.3 General systems

Theorems 4.3 and 4.4 can readily be generalized for normal matrices, but it is difficult to obtain
such bounds for general matrices without making specific assumptions. To see this, note that
it is difficult to give sharp bounds for (9) in lemma 4.1. However, the following theorem states
that DPA is invariant under certain transformations and helps in getting more insight in DPA for
general, non-defective systems (E,A,b, c).

Theorem 4.7. Let (A,E) be a non-defective matrix pencil, and let X, Y ∈ Cn×n be of full rank. If
DPA(E,A,b, c, s0) produces the sequence (xk,yk, sk+1), then DPA(Y ∗EX, Y ∗AX, Y ∗b, X∗c, s0)
produces the sequence (X−1xk, Y −1yk, sk+1), and vice versa.

Proof. If x = xk is the solution of
(sE −A)x = b,

then x̃ = x̃k = X−1x is the solution of

(sY ∗EX − Y ∗AX)x̃ = Y ∗b,
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and vice versa. Similar relations hold for y = yk and ỹ = ỹk = Y −1y. The proof is completed by
noting that

sk+1 =
ỹ∗Y ∗AXx̃
ỹ∗Y ∗EXx̃

=
y∗Ax
y∗Ex

= sk+1.

Let W and V have as their columns the left and right eigenvectors of (A,E), respectively,
i.e. AV = EV Λ and W ∗A = ΛW ∗E, with Λ = diag(λ1, . . . , λn). Furthermore, let W and V be
scaled so that W ∗EV = ∆, where ∆ is a diagonal matrix with δii = 1 for finite λi and δii = 0
for |λi| = ∞. According to theorem 4.7, DPA(E,A,b, c) and DPA(∆,Λ,W ∗b, V ∗c) produce the
same pole estimates sk. In b̃ = W ∗b and c̃ = V ∗c, the new right hand-sides, one recognizes the
contributions to the residues Ri = c̃ib̃i = (c∗vi)(w∗

i b). The more dominant pole λi is, the larger
the corresponding coefficients b̃i and c̃i are, and, since (Λ,∆) is a diagonal pencil, the larger the
chance that DPA converges to the unit vectors ṽ = ei and w̃ = ei, that correspond to the right
and left eigenvectors vi = V ei and wi = Wei, respectively.

As observed earlier, DPA emphasizes the dominant mode every iteration by keeping the right
hand-sides fixed, and thereby can be expected to enlarge the convergence neighborhood also for
general systems, compared to two-sided RQI. In practice, the quadratic instead of cubic rate of
local convergence costs at most 2 or 3 iterations. Numerical experiments confirm that the basins
of attraction of the dominant eigenvalues are larger for DPA, as will be discussed in the following
section.

5 Basins of attraction and typical convergence behavior

It is not straightforward to characterize the global convergence of DPA, even not for symmetric
matrices (see [12, p. 236-237]). Basins of attraction of RQI in the three-dimensional case are
studied in [1, 3, 14], while in [4, 21] local convergence neighborhoods are described. Because
the DPA residuals rk = (A − ρkI)b are not monotonically decreasing (in contrast to the inverse
iteration residuals rk = (A − σI)xk and the RQI residuals rk = (A − ρkI)xk, see [4, 14, 15]), it
is not likely that similar results can be obtained for DPA. Numerical experiments, however, may
help to get an idea of the typical convergence behavior of DPA and may show why DPA is to be
preferred over two-sided RQI for the computation of dominant poles.

An unanswered question is how to choose the initial shift of DPA. An obvious choice is the
two-sided Rayleigh quotient s0 = (c∗Ab)/(c∗Eb). This choice will work in the symmetric case
A = A∗, E = I, c = b. In the general nonsymmetric case this choice will not always be possible:
the vectors b and c are often very sparse (only O(1) nonzero entries) and moreover, it may happen
that c∗Eb = 0. In that case the initial shift should be based on heuristics. For two-sided RQI, an
obvious choice is to take as the initial vectors x0 = b and y0 = c, but similarly, if y∗0Ex0 = 0, this
fails. Therefore, in the following experiments an initial shift s0 will be chosen and the (normalized)
initial vectors for two-sided RQI are x0 = (A− s0E)−1b and y0 = (A− s0E)−1c, see Alg. 2.

All experiments were executed in Matlab 7 [22]. The criterion for convergence was ||Axk −
sk+1Exk||2 < 10−8.

5.1 Three-dimensional symmetric matrices

Because RQI and DPA are shift and scaling invariant, the region of all 3× 3 symmetric matrices
can be parametrized by A = diag(−1, s, 1), with 0 ≤ s < 1 due to symmetry (see [14]). In order
to compute the regions of convergence of RQI and DPA (as defined in (13, 14)), the algorithms
are applied to A for initial shifts in the range (−1, 1)\{s}, with c = b = (b1, b2, b3)T , where
0 < b2 ≤ 1 and b1 = b3 =

√
(1− b2

2)/2. In figure 3 the results are shown for s = 0 and s = 0.8.
The intersections ρ = ρλ1 and ρ = ρλ3 at b2 = b with the borders define the convergence regions:
for −1 ≤ ρ0 < ρλ1 there is convergence to λ1 = −1, for ρλ1 ≤ ρ0 < ρλ3 there is convergence to
λ2 = s, while for ρλ3 ≤ ρ0 ≤ 1 there is convergence to λ3 = 1.
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Figure 3: Convergence regions for DPA (solid borders) and RQI (dashed), and the theoretical
DPA border (dash-dot, see Thm. 4.3), for the matrix A = diag(−1, s, 1), for s = 0 (left) and
s = 0.8. The regions of convergence to λ2 = s for DPA and RQI respectively are enclosed between
the lower and upper borders of DPA and RQI respectively. The regions of convergence to λ1 = −1
(λ3 = 1) are below (above) the lower (upper) border.

For the case s = 0 it can be observed that (see vertical lines) for 0 ≤ b2 > 0.5, the convergence
region to the dominant extremal eigenvalues is larger for DPA. For 0.5 > b2 ≤ 1/

√
3 ≈ 0.577,

the point at which λ2 becomes dominant, the convergence region of RQI is larger. However, for
b2 ? 0.5, the convergence region of λ2 is clearly larger for DPA. Note also that the theoretical
(lower bound αdpaγ of the) local convergence neighborhood for DPA (Thm. 4.3) is even larger
than the practical convergence neighborhood of two-sided RQI for b2 ? 0.8.

A similar observation can be made for the case s = 0.8. There, due to the decentralized
location of λ2, the figure is not symmetric and the region of convergence of λ2 is clearly larger
for DPA. For 0 ≤ b2 > 0.35, DPA and RQI appear to be very sensitive to the initial shift. While
the convergence region for λ1 was similar to the case s = 0, convergence for −0.1 > ρ0 > 0.8 was
irregular in the sense that for initial shifts in this interval both λ2 and λ3 could be computed;
hence the regions are only shown for b2 ? 0.35. Because the theoretical lower bounds are much
smaller, since d = mini 6=j |λi − λj | = 0.2, and make the figure less clear, they are not shown (the
theoretical DPA border still crosses the practical two-sided RQI border around b2 ≈ 0.9).

It is almost generic, that apart from a small interval of values of b2, the area of convergence of
the dominant eigenvalue is larger for DPA than for RQI. The following example discusses a large
scale general system.

5.2 A large scale example

This example is a test model of the Brazilian Interconnect Power System (BIPS) [17, 16]. The
sparse matrices A and E are of dimension n = 13, 251 and E is singular. The input and output
vectors b and c only have one nonzero entry and furthermore cT Eb = 0; the choice x0 = b and
y0 = c is not practical, see the beginning of this section. The pencil (A,E) is non-normal and
the most dominant poles appear in complex conjugated pairs. It is not feasible to determine the
converge regions for the entire complex plane, but the convergence behavior in the neighborhood
of a dominant pole can be studied by comparing the found poles for a number of initial shifts in
the neighborhood of the pole, for both DPA and two-sided RQI (Alg. 1 and Alg. 2). The results,
for two areas of the complex plane, are shown in figure 4 and figure 5.

Initial shifts for which DPA and two-sided RQI converge to the target (the most dominant
pole, in the center of the domain) or its complex conjugate are marked by a circle and an x,
respectively. In figure 4, occasionally there is converge to a more dominant pole outside the
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Figure 4: Convergence regions for DPA and two-sided RQI, for the example of section 5.2. The
center of the domain is the pole λ ≈ −2.9 ± 4.8i with residue norm |R| ≈ 3.0 · 10−3. Circles
(x-es) mark initial shifts for which convergence to the target takes place for DPA (two-sided RQI).
Horizontal and vertical stride are both 0.25.
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Figure 5: Convergence regions for DPA and two-sided RQI, for the example of section 5.2. The
center of the domain is the pole λ ≈ −20.5 ± 1.1i, with residue norm |R| ≈ 6.2 · 10−3. Circles
(x-es) mark initial shifts for which convergence to the target takes place for DPA (two-sided RQI).
Horizontal and vertical stride are 0.5 and 0.25.
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depicted area (marked by a square and a +, respectively). Grid points with no marker denote
convergence to a less dominant pole.

Figure 4 shows rather irregular convergence regions for both DPA and two-sided RQI. This
is caused by the presence of many other (less) dominant poles in this part of the complex plane.
Nevertheless, the basins of attraction of the dominant poles are notably larger for DPA. Moreover,
it can be observed that even for initial shifts very close to another less dominant pole, DPA
converges to a more dominant pole, while two-sided RQI converges to the nearest pole. For
example, for initial shift s0 = −2 + 4.5i, DPA converges to λ ≈ −2.9 + 4.8i with |R| ≈ 3.0 · 10−3,
while two-sided RQI converges to λ ≈ −2.1 + 4.6i with |R| ≈ 1.0 · 10−5.

In figure 5 the target is the most dominant pole of the system. It can be clearly observed
that for DPA the number of initial shifts that converge to the dominant pole is larger than for
two-sided RQI. The basin of attraction of the dominant pole is larger for DPA: except for regions
in the neighborhood of other relatively dominant poles (see, for instance, the poles in the interval
(−28,−24) on the real axis), there is convergence to the most dominant pole. For DPA typically
the size of the basin of attraction increases with the relative dominance of the pole, while for
two-sided RQI the effect is less strong, cf. theorem 4.3, theorem 4.4 and the discussion in section
4.2. The symmetry with respect to the real axis can be explained by the fact that if for initial
shift s0, DPA (two-sided RQI) produces the sequence (xk,yk, sk+1) converging to (v,w, λ), then
for s̄0 it produces the sequence (x̄k, ȳk, s̄k+1) converging to (v̄, w̄, λ̄).

In both figures it can be seen that for many initial shifts DPA converges to the most dominant
pole, but two-sided RQI does not. On the other hand, for a very small number of initial shifts, two-
sided RQI converges to the most dominant pole while DPA does not. This is a counterexample
for the obvious thought that if two-sided RQI converges to the dominant pole, then also DPA
converges to it.

The average number of iterations needed by DPA to converge to the most dominant pole was
7.2, while two-sided RQI needed an average number of 6.0 iterations. The average numbers over
the cases where both DPA and two-sided RQI converged to the most dominant pole were 6.1 and
5.9 iterations, respectively.

Similar behavior is observed for other systems and transfer functions. Although the theoretical
and experimental results do not provide hard evidence in the sense that they prove that the basin
of attraction of the dominant pole is larger for DPA than for two-sided RQI, they indicate at least
an advantage of DPA over two-sided RQI.

5.3 PEEC example

The PEEC system [6] is a well known benchmark system for model order reduction applications.
One of the difficulties with this system of order n = 584 is that it has many equally dominant poles
that lie close to each other in a relatively small part, [−1, 0] × [−10i, 10i], of the complex plane.
This explains why in figure 6 for only a relatively small part of the plane there is convergence
(marked by circles and x-es for DPA and two-sided RQI, respectively) to the most dominant pole
λ ≈ −0.14± 5.4i (marked by a *).

Although the difference is less pronounced than in the previous examples, DPA still converges
to the most dominant pole in more cases than two-sided RQI, and the average residue norm of
the found poles was also larger: Rdpa

avg ≈ 5.2 · 10−3 vs. Rrqi
avg ≈ 4.5 · 10−3. Again a remarkable

observation is that even for some initial shifts very close to another pole, DPA converges to the
most dominant pole, while two-sided RQI converges to the nearest pole: e.g., for initial shift
s0 = 5i DPA converges to the most dominant pole λ ≈ −0.143+5.38i with |R| ≈ 7.56 ·10−3, while
two-sided RQI converges to less dominant pole λ ≈ −6.3 · 10−3 + 4.99i with |R| ≈ 3.90 · 10−5.

The average number of iterations needed by DPA to converge to the most dominant pole was
9.8, while two-sided RQI needed an average number of 7.9 iterations. The average numbers over
the cases where both DPA and two-sided RQI converged to the most dominant pole were 9.4 and
7.7 iterations, respectively.
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Figure 6: Convergence regions for DPA and two-sided RQI. The center of the domain is the pole
λ ≈ −0.14 ± 5.4i, with residue norm |R| ≈ 7.6 · 10−3. Circles (x-es) mark initial shifts for which
convergence to the target takes place for DPA (two-sided RQI). Horizontal and vertical stride are
both 0.2.

6 Conclusions

The theoretical and numerical results confirm the intuition, and justify the conclusion, that the
Dominant Pole Algorithm has better global convergence than two-sided Rayleigh quotient iter-
ation to the dominant poles of a large scale dynamical system. The derived local convergence
neighborhoods of dominant poles are larger for DPA, as the poles become more dominant, and
numerical experiments indicate that the local basins of attraction of the dominant poles are larger
for DPA than for two-sided RQI.

Both DPA and two-sided RQI need to solve two linear systems at every iteration. The difference
between DPA and two-sided RQI is that DPA keeps the right hand-sides fixed to the input and
output vector of the system, while two-sided RQI updates the right hand-sides every iteration. The
more dominant a pole is, the bigger the difference in convergence behavior between DPA and two-
sided RQI. The other way around, for considerably less dominant poles, the basins of attraction
are much smaller for DPA than for two-sided RQI. This could be observed in cases where the
initial shift was very close to a less dominant pole and DPA converged to a more dominant pole,
while two-sided RQI converged to the nearest, less dominant pole.

The fact that DPA has a asymptotically quadratic rate of convergence, against a cubic rate for
two-sided RQI, is of minor importance, since this has only a very local effect and hence leads to a
small difference in the number of iterations (typically a difference of 1 or 2 iterations). Furthermore,
there exist criteria to switch from DPA to two-sided RQI.
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