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Abstract

This paper describes efficient algorithms for the computation of dominant zeros of large
scale transfer functions. The transfer function zeros are demonstrated to be equal to the poles
of a new inverse system, which is valid even for the strictly proper case. This is a new finding,
which is important from practical as well as theoretical viewpoints. Hence, the dominant
zeros can be computed as the dominant poles of the inverse transfer function by the recent
efficient SADPA and SAMDP algorithms. The importance of computing dominant zeros and
the performance of the algorithms are illustrated by examples from practical power system
models.

1 Introduction

The zeros of a transfer function are important in several applications such as the analysis and
design of multivariable feedback control systems. The coordinated design of power system stabi-
lizers, for damping electromechanical oscillations in large interconnected power systems, involves
numerous decentralized control loops and greatly benefits from the knowledge of scalar as well as
multivariable zeros.

There are several methods for the computation of all zeros of a transfer function, see [27, 17, 33]
and references therein. However, all these methods are only applicable to moderately sized systems,
while in practice one is often interested only in the most dominant zeros of large scale transfer
functions.

The SADPA (SAMDP) algorithms for the computation of dominant poles of (multivariable)
transfer functions that have been developed in [23, 22], can be used, when adapted, for several other
applications. This paper is concerned with variants that can be used to compute the dominant
zeros of transfer functions of large scale dynamical systems. In fact, it will be shown that the
SADPA (SAMDP) algorithms can be used without adaptation, by using the relationship between
the zeros of the transfer function and the poles of the corresponding inverse transfer function.

The outline of the paper is as follows. Definitions of poles and zeros of general transfer func-
tions are given in section 2, as well as the motivation for finding dominant zeros of scalar and
multivariable transfer functions. In section 3, algorithms will be described to compute a domi-
nant zero of a large scale SISO or MIMO transfer function. It will be shown that the zeros of a
transfer function are equal to the poles of the inverse transfer function. Hence, the SADPA [23]
and SAMDP [22] algorithms can be used to compute the dominant zeros via the dominant poles
of the inverse transfer function, as will be described in section 4. All algorithms are illustrated by
large scale examples and applications from practical power system models in section 5. Section 6
concludes.
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2 Transfer functions, poles, and zeros

Throughout this paper, the dynamical systems (E,A, B, C, D) are of the form{
Eẋ(t) = Ax(t) + Bu(t)
y(t) = CT x(t) + Du(t), (1)

where A,E ∈ Rn×n, E singular, B ∈ Rn×m, C ∈ Rn×p, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp and
D ∈ Rp×m. The transfer function H(s) : C −→ Cp×m is defined as

H(s) = CT (sE −A)−1B + D, (2)

with s ∈ C. If m = p = 1, the system (1) is called a single-input single-output (SISO) system,
and b = B, c = C ∈ Rn are vectors and d = D ∈ R is a scalar. Otherwise it is a multi-input
multi-output (MIMO) system.

The eigenvalues λi ∈ C of the matrix pencil (A,E) are the poles of transfer function (2). An
eigentriplet (λi,xi,yi) is composed of an eigenvalue λi of (A,E) and the corresponding right and
left eigenvectors xi,yi ∈ Cn:

Axi = λiExi, xi 6= 0,

y∗i A = λiy∗i E, yi 6= 0.

Assuming that the pencil is non-defective, the right and left eigenvectors corresponding to finite
eigenvalues can be scaled so that y∗i Exi = 1. Furthermore, it can be shown that left and right
eigenvectors corresponding to distinct eigenvalues are E-orthogonal: y∗i Exj = 0 for i 6= j. The
transfer function H(s) can be expressed as a sum of residue matrices Ri ∈ Cp×m over the ñ ≤ n
finite first-order poles [11]:

H(s) =
ñ∑

i=1

Ri

s− λi
+ R∞ + D,

where the residues Ri are
Ri = (CT xi)(y∗i B),

and R∞ is the constant contribution of the poles at infinity (often zero).

2.1 Dominant poles

Although there are different indices of modal dominance [1, 10, 30], the following will be used in
this paper.

Definition 2.1. A pole λi of H(s) with corresponding right and left eigenvectors xi and yi

(y∗i Exi = 1) is called the most dominant pole if R̂i = ||Ri||2/|Re(λi)| = σmax(Ri)/|Re(λi)| > R̂j

for all j 6= i.

A pole λj that corresponds to a residue Rj with large σmax(Rj)/|Re(λj)| is called a dominant
pole, i.e. a pole that is well observable and controllable in the transfer function. This can also be
observed from the corresponding σmax-plot [13, 22, 2] of H(s), where peaks occur at frequencies
close to the imaginary parts of the dominant poles of H(s) (in the SISO case this plot is called
the Bode plot, see also Fig. 1). An approximation of H(s) that consists of k � n terms with
||Rj ||2/|Re(λj)| above some value, determines the effective transfer function behavior [29] and will
be referred to as transfer function modal equivalent:

Hk(s) =
k∑

j=1

Rj

s− λj
.

Because a residue matrix Rj is the product of a column vector and a row vector, it is of unit rank.
Therefore at least min(m, p) different poles (and corresponding residue matrices) are needed to
obtain a modal equivalent with nonzero σmin(ω) plot [16, 21].

2



2.2 Dominant zeros

There are many different approaches to the definition of multivariable system zeros, see for instance
[27] for an extensive overview. In the SISO case, z0 ∈ C is called a transmission zero if H(z0) =
cT (z0E − A)−1b + d = 0. More generally, there is a distinction between transmission zeros and
invariant zeros. This paper will focus on the computation of transmission zeros.

The Rosenbrock system matrix [25] corresponding to (1) is

Σ =
[
sE −A B
−CT D

]
, (3)

and is of importance, amongst others, because it can be transformed to the form[
I 0
0 H(s)

]
, (4)

from which it can be seen that rank(Σ) = n + rank(H(s)). The definition of a transmission zero
is given in Def. 2.2.

Definition 2.2. A number z0 ∈ C is called a transmission zero if it satisfies

rank(H(z0)) < rank(H(s)).

Note that with this definition it is not sufficient to have one entry of H(z0) equal to zero, and
not necessary to have H(z0) = 0. The transmission zeros are a subset of the invariant zeros of a
system, that are defined as follows.

Definition 2.3. A number z0 ∈ C is called an invariant zero if it satisfies

rank
[
z0E −A B
−CT D

]
< rank(Σ).

If the system (1) is minimal, transmission zeros and invariant zeros form equal sets, and are
simply called zeros.

If Σ, and hence H(s) by (4), have full column rank (m ≤ p), the vectors x and u corresponding
to z0 that satisfy [

z0E −A −B
CT D

] [
x
u

]
= 0, x ∈ Cn,u ∈ Cm,

are called the right zero state and state zero input, respectively [27]. Dually, if Σ has full row rank
(m ≥ p), the vectors y and v corresponding to z0 that satisfy

[
y∗ v∗

] [
z0E −A −B

CT D

]
= 0, y ∈ Cn,v ∈ Cp,

are called the left zero state and state zero input, respectively [27].
The problem of finding the invariant zeros of a square system can also be formulated as the

generalized eigenvalue problem

Azxz = λEzxz, xz ∈ Cn+m, (5)

where

Az =
[

A B
−CT −D

]
, Ez =

[
E 0
0 0

]
, and xz =

[
x
u

]
.

There are also definitions of input decoupling zeros and output decoupling zeros, and system
zeros [27], but these are beyond the scope of this paper.

Whereas a dominant pole causes a peak in a Bode plot of the transfer function, a dominant
zero cause a dip, see also Fig. 1. This leads to the following, rather informal definition of a
dominant zero.
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Definition 2.4. A zero zi is called dominant if its distance di = minj |zi−λj | to the nearest pole
λj is considerable, while its distance to the imaginary axis is small.

In other words, the dominant zeros are the zeros close to the imaginary axis, that ‘stand out’
in the pole-zero plot, see also Fig. 1. In sections 3.3.1 and 3.3.2, it will be shown that the zeros
are the poles of the inverse system, if it exists. Then, a zero is called dominant if it is a dominant
pole of the inverse system (by definition 2.1). It must be stressed that in different applications
different definitions of the dominance of a zero can be used. In stabilization studies, for example,
the rightmost and lowest damped zeros are the dominant zeros.

2.3 Practical need for the computation of dominant transfer function
zeros

2.3.1 Theoretical considerations

Consider the block diagram of a typical control system depicted in Fig. 2. Let nG(s), dG(s),
nK(s) and dK(s) be polynomials of s defining scalar proper rational functions

G(s) =
nG(s)
dG(s)

and K(s) =
nK(s)
dK(s)

,

where G(s) represents the system dynamics to be controlled and K(s) is the designed controller.
It is easily verified that the closed-loop transfer function H(s) is a (2× 2) transfer matrix:[

y(s)
z(s)

]
=

[
Hyu(s) Hyw(s)
Hzu(s) Hzw(s)

]
︸ ︷︷ ︸

H(s)

[
u(s)
w(s)

]
,

with

H =
[

G −G
GK 1

]
1

1+GK

=
[

nGdK −nGdK

nGnK dGdK

]
1

dGdK+nGnK
.

(6)

The focus here is on the main diagonal elements of the numerator matrix of H shown in (6).
While the transfer function Hyu(s) represents the actual closed-loop control channel, the input-
output pair (w, z) defines a synthetic disturbance channel Hzw(s) used here only for analysis
purposes. It is clear from (6) that the set of zeros of Hyu and Hzw can be split in two subsets:

{zeros of Hyu} = {zeros of G} ∪ {poles of K},
{zeros of Hzw} = {poles of G} ∪ {poles of K}. (7)

As the controller K is determined by the designer and is, in general, of small order, the subset
of closed-loop zeros corresponding to the poles of K are already known and not relevant to the
current analysis. The remaining closed-loop zeros are either open-loop zeros (for the control
channel (Hyu)) or open-loop poles (for the disturbance channel (Hzw)) of possibly large scale
transfer functions.

The case where the signals u, y, w and z are vectors of compatible dimensions is also of interest.
In this case, the MIMO closed-loop transfer functions for the control and disturbance channels
are, respectively:

Hyu = (I + GK)−1G = G(I + KG)−1, and
Hzw = (I + KG)−1. (8)

Considering a right and a left coprime factorization for G and K, respectively, as

G = NGD−1
G and K = D−1

K NK ,
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Figure 1: (a) Bode plot of transfer function W36/Pmec36 of the New England test system (66
states, see also [14]), together with a 11th order modal equivalent. (b) Part of corresponding pole
(∗) - zero (+) plot. The dominant zeros (poles), marked by encircled +-s (∗-s), cause the dips
(peaks) in the Bode plot.
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Figure 2: Closed-loop system.

(NG, DG, NK , DK polynomials, with DG, DK nonsingular) and substituting them in (8) yields

Hzw = (I + D−1
K NKNGD−1

G )−1

= DG(DKDG + NKNG)−1DK (9)

that pre-multiplied by NGD−1
G becomes

Hyu = NG(DKDG + NKNG)−1DK . (10)

Since DG and NG are numerators in (9) and (10), respectively, one can draw similar conclusions
regarding closed-loop zeros for MIMO systems (even for non-square G and K).

2.3.2 Practical applications

a. The first practical application comes from the fact that the closed-loop transfer functions
Hzw and Hyu have some zeros on the two extreme points of relevant root locus branches.
In other words, some branches of interest start at the zeros of Hzw (null loop gain) and end
at the zeros of Hyu (infinite loop gain). Hence, an efficient algorithm for the computation
of dominant transfer function zeros, applied to adequately chosen closed-loop channels, is
useful to the stability analysis of large scale control systems.

b. There are at least two other interesting uses of the property (7) in the dominant zeros context.
Some important features of the dominant open- and closed-loop poles can be catched from
a single frequency response diagram, making the control analysis easier. For instance, given
a stabilizing controller K, the Bode plot of the synthetic disturbance channel Hzw provides
good estimates for the frequency and damping ratio of the open- (dips) and closed-loop
(peaks) poles.

c. Dominant transmission zeros properties are applied to identify the best candidate locations
for additional stabilizers to most effectively damp electromechanical modes in large power
systems, as described in the closure of [15] and in [5].

d. Dominant zeros of driving point impedances are computed and effectively shifted, by use
of eigenvalue sensitivity coefficients, in the harmonic distortion analysis of industrial power
systems [31].

3 Computing transfer function zeros

The algorithms for the computation of zeros in this paper are in fact Newton schemes and have
many similarities with the dominant pole algorithms DPA [14], SADPA [23] and SAMDP [22].
Algorithms that compute a single zero are shown in section 3.1 for the SISO case and in section
3.2 for the MIMO case. In section 3.3 it is shown that the zeros are poles of the inverse transfer
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function. Consequently, the SADPA and SAMDP algorithms can be used to compute the dominant
zeros via the poles of the inverse transfer function, as will be described in section 4.

Earlier work in this direction was done in [15]. Full space methods based on the QZ algorithm
[18, 9] to compute all zeros of a system are described in [7, 17]. These methods are of complex-
ity O((n + max(m, p))3) and hence only applicable to moderately sized systems. The methods
described in this paper are intended for very large systems, where one is specifically interested in
the dominant zeros.

3.1 SISO Dominant Zero Algorithm (DZA)

Newton’s method can be used to compute the zeros zi ∈ C of the objective function

f : C −→ C : s 7−→ c∗(sE −A)−1b + d. (11)

The derivative of the inverse of a square matrix Y (s) is given by

d[Y −1(s)]
ds

= −Y −1(s)Y ′(s)Y −1(s),

and it follows that the derivative of the objective function (11) is

f ′(s) = −c∗(sE −A)−1E(sE −A)−1b. (12)

Using (11) and (12), the Newton scheme for the computation of a zero becomes

sk+1 = sk −
f(sk)
f ′(sk)

= sk +
c∗(skE −A)−1b + d

c∗(skE −A)−1E(skE −A)−1b

= sk +
c∗x + d

y∗Ex
,

where
x = (skE −A)−1b, and y = (skE −A)−∗c.

An implementation of this scheme is shown in Alg. 1. In the neighborhood of a solution the
algorithm converges quadratically. A different, more difficult formulation that works with Σ (3)
can be found in [15].

The DZA scheme only differs a minus sign from the Newton scheme for finding dominant poles
(DPA, see [14, 3, 4]). For DPA, the objective function is 1/f(s) and the scheme becomes (see also
[23])

sdpa
k+1 = sdpa

k −
c∗(sdpa

k E −A)−1b + d

c∗(sdpa
k E −A)−1E(sdpa

k E −A)−1b

=
y∗Ax
y∗Ex

≡ ρ(A,E,x,y),

where ρ(A,E,x,y) is called the two-sided Rayleigh quotient [19]. Similarly, it follows that in DZA,
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Algorithm 1 Dominant Zero Algorithm (DZA).
INPUT: System (E,A,b, c, d), initial zero estimate s1 ∈ C
OUTPUT: Zero λ and corresponding right and left zero states x and y
1: Set k = 1
2: while not converged do
3: Solve x ∈ Cn from (skE −A)x = b
4: Solve y ∈ Cn from (skE −A)∗y = c
5: Compute the new zero estimate

sk+1 = sk +
c∗x + d

y∗Ex

6: The zero λ = sk+1 has converged if ||rk||2 < ε, where

rk =
[
sk+1E −A −b

c∗ d

] [
x
1

]
for some ε � 1

7: Set k = k + 1
8: end while

the new shift sk+1 can be written as a two-sided Rayleigh quotient ρ(Az, Ez,xz,yz):

sdza
k+1 = sdza

k +
c∗x + d

y∗Ex

=
y∗(A + (sdza

k E −A)x
y∗Ex

+
c∗x + d

y∗Ex

=
y∗(Ax + b) + c∗x + d

y∗Ex

=

[
y∗ −1

] [
A b
−c∗ −d

] [
x
1

]
[
y∗ −1

] [
E 0
0 0

] [
x
1

]
=

y∗zAzxz

y∗zEzxz

≡ ρ(Az, Ez,xz,yz),

with

Az =
[

A b
−c∗ −d

]
, Ez =

[
E 0
0 0

]
,

xz =
[
x
1

]
, yz =

[
y
−1

]
.

Like the poles can also be computed with two-sided Rayleigh quotient iteration (two-sided
RQI) [19] applied to (A,E), the zeros can be computed by applying two-sided RQI to (Az, Ez) as
well. However, as is discussed in [24], DPA (DZA) tends to converge to dominant poles (zeros),
while two-sided RQI tends to converge to poles (zeros) closest to the initial shift.

3.2 MIMO Dominant Zero Algorithm (MDZA)

The objective function for finding the zeros of a general MIMO transfer function (2) is

f : C −→ R : s 7−→ σmin(H(s)). (13)
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Let (σmin(s),u(s),v(s)) be the minimal singular triplet of H(s), ie. H(s)u(s) = σmin(s)v(s) and
H∗(s)v(s) = σmin(s)u(s). It follows that H∗(s)H(s)u(s) = σ2

minu(s). It is more convenient to
work with the following objective function (equivalent to (13)):

f : C −→ R : s 7−→ λmin(H∗(s)H(s)), (14)

with λmin = σ2
min. Because f(s) in (14) is a function from C −→ R, in general the derivative

df(s)/ds is not injective. A complex scalar z = a+ jb ∈ C can be represented by [a, b]T ∈ R2. The
partial derivatives of the objective function (14) become

∂f

∂a
(s) = −σmin(s)(y∗Ex + (y∗Ex)∗),

∂f

∂b
(s) = −jσmin(s)(y∗Ex− (y∗Ex)∗),

where
x = (sE −A)−1Bu, y = (sE −A)−∗Cv.

The derivative of (14) then becomes

∇f = −2σmin(s)[Re(y∗Ex),−Im(y∗Ex)],

where Re(a + jb) = a and Im(a + jb) = b. The Newton scheme is[
Re(sk+1)
Im(sk+1)

]
=

[
Re(sk)
Im(sk)

]
− (∇f(sk))†f(sk)

=
[
Re(sk)
Im(sk)

]
+ [Re(y∗Ex),−Im(y∗Ex)]†

σmin

2
,

where Y † = Y ∗(Y Y ∗)−1 denotes the pseudo-inverse of a matrix Y ∈ Cn×m with rank(Y ) = n
(n ≤ m) [9].

This generalization of the Newton method is also known as the normal flow method [32] and
can be shown, under certain conditions, to converge (super) linearly. The algorithm for systems
with full column rank transfer functions H(s) (p ≥ m) is shown in Alg. 2. If p = m, both right
and left zero states are returned. If p > m, the right zero states are returned. If p < m, the left
zero states can be computed by calling the algorithm with the dual system (E∗, A∗,−C,−B,D∗).

For SISO systems, the algorithm simplifies to Alg. 1. For square MIMO systems, it is advised
to follow an approach similar to the MDPA algorithm for square systems in [22]: if the objective
function

f : C −→ C : s 7−→ λmin(H(s))

is taken, the scheme simplifies to a standard Newton scheme, where no pseudo-inverses are needed
and convergence is asymptotically quadratic.

3.3 Zeros as the poles of the inverse transfer function

In this section realizations of inverse systems are given. An inverse system is a system whose
transfer function is the inverse of the transfer function of the original system. The zeros of the
original transfer function become poles of the inverse transfer function. This fact can be used
to compute the zeros via the poles of the inverse transfer function, using the SADPA [23] and
SAMDP [22] algorithms, as is shown in section 4. In principle, a modal equivalent of the inverse
transfer function can be build from the dominant poles and corresponding residues of the inverse
system.
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Algorithm 2 MIMO Transmission Zero Algorithm (MDZA).
INPUT: System (E,A, B, C, D) with p ≥ m, initial pole estimate s1

OUTPUT: Zero λ and corresponding right and/or left state zero directions, inputs x,u and y,v.
1: Set k = 1
2: while not converged do
3: Compute singular triplet (σmin,u,v) of H(sk)
4: Solve x ∈ Cn from (skE −A)x = Bu
5: Solve y ∈ Cn from (skE −A)∗y = Cv
6: Compute the new pole estimate[

Re(sk+1)
Im(sk+1)

]
=

[
Re(sk)
Im(sk)

]
+ [Re(y∗Ex),−Im(y∗Ex)]†

σmin

2
,

7: The zero λ = sk+1 has converged if ||rk||2 < ε, where

rk =
[
sk+1E −A −B

C∗ D

] [
x
u

]
for some ε � 1

8: Set k = k + 1
9: end while

3.3.1 SISO transfer functions

It is well known that for SISO systems, the poles of the high gain output feedback closed-loop
system approach the zeros of the open-loop system Σ = (E,A,b, c, d). This result is used in some
algorithms for the computation of transmission zeros [6, 15]. In the following it will be shown
how, given a system Σ = (E,A,b, c, d), an inverse system Σz = (Ez, Az,bz, cz, dz) can be defined,
so that the transfer function Hz(s) of Σz is the inverse of the transfer function H(s) of Σ. The
important consequence of these results is that the dominant zeros become the dominant poles of
the inverse transfer function, so that existing algorithms such as DPA and SADPA can be used to
compute the dominant zeros - via the dominant poles of the inverse system.

The following theorem defines a system Σz = (Ez, Az,bz, cz, 0), with transfer function Hz(s),
such that Hz(s)H(s) = H(s)Hz(s) = 1, where H(s) is the transfer function of Σ = (A,b, c, 0).
Existing literature that mentions such a system (for d = 0) is not known to the authors.

Theorem 3.1. Let
y(s) = H(s)u(s) =

[
cT (sE −A)−1b

]
u(s)

be the transfer function of the descriptor realization Σ = (E,A,b, c, d = 0), and let

yz(s) = Hz(s)uz(s) =
[
cT

z (sEz −Az)−1bz

]
uz(s)

be the transfer function of the augmented descriptor realization Σz = (Ez, Az,bz, cz, dz = 0),
where

Az =
[

A b
−cT 0

]
, Ez =

[
E 0
0 0

]
,

bz =
[
b
1

]
, cz =

[
c
1

]
, dz = 0.

Then Hz(s) = H−1(s).
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Proof. Let u ≡ u(s), y ≡ y(s) = cT x(s), x ≡ x(s) = (sE − A)−1bu(s), uz ≡ uz(s), yz ≡ yz(s) =
cT

z xz(s), xz ≡ xz(s) = (sEz −Az)−1bzuz(s), and the Rosenbrock system matrix [25] equation for
Σ [

sE −A −b
cT 0

] [
x
u

]
=

[
0
y

]
.

By adding (by − by) to the left side of the equation (sE − A)x − bu = 0 and defining the error
(u− y) as a new algebraic variable, one obtains sE −A −b −b

cT 0 −1
cT 1 0

 x
u− y

y

 =

0
0
u


or [

sEz −Az −bz

cT
z 0

] [
xz

uz

]
=

[
0
yz

]
,

which is the Rosenbrock system matrix equation for Σz. Hence uz(s) = y(s), yz(s) = u(s) and
Hz(s) = H−1(s).

A similar result can be obtained for the case d 6= 0, see for example [11, Ex. 2.2-20] and [12, 28],
which is described below in the form of a theorem.

Theorem 3.2. Let
y(s) = H(s)u(s) =

[
cT (sE −A)−1b + d

]
u(s)

be the transfer function of the descriptor realization Σ = (E,A,b, c, d 6= 0), and let

yz(s) = Hz(s)uz(s) =
[
cT

z (sEz −Az)−1bz + dz

]
uz(s)

be the transfer function of the descriptor realization Σz = (Ez, Az,bz, cz, dz 6= 0), where

Az = A− d−1bcT , Ez = E,

bz = d−1b, cz = −d−1c, dz = d−1.

Then Hz(s) = H−1(s).

Proof. Let u ≡ u(s), y ≡ y(s) = cT x(s) + du(s), x ≡ x(s) = (sE − A)−1bu(s), uz ≡ uz(s),
yz ≡ yz(s) = cT

z xz(s) + dzuz(s), xz ≡ xz(s) = (sEz − Az)−1bzuz(s), and the Rosenbrock system
matrix equation for Σ [

sE −A −b
cT d

] [
x
u

]
=

[
0
y

]
. (15)

The expression u = −d−1cT x + d−1y is obtained from the second equation of (15), which is
substituted into the first equation of (15) to yield[

sE − (A− d−1bcT ) −d−1b
−d−1cT d−1

] [
xz

y

]
=

[
0
u

]
,

or [
sEz −Az −bz

cT
z dz

] [
xz

uz

]
=

[
0
yz

]
,

which is the Rosenbrock system matrix equation for Σz. Hence uz(s) = y(s), yz(s) = u(s) and
Hz(s) = H−1(s).

In fact, DZA applied to (E,A,b, c, d) and DPA applied to (Ez, Az,bz, cz, dz) are equivalent
processes and hence produce the same results, provided the initial shift is the same:

Theorem 3.3. DZA(E, A, b, c, d, s0) and DPA(Ez, Az, bz, cz, dz, s0) are equivalent.
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Proof. First consider the case d = dz = 0 (cf. theorem 3.1 for notation). It can be verified, with
x = (skE −A)−1b and y = (skE −A)−∗c, that

xz =
1

c∗x

[
x

1− c∗x

]
and yz =

1
b∗y

[
−y

1 + b∗y

]
are solutions of

(skEz −Az)xz = bz and (skEz −Az)∗yz = cz.

Since (b∗y)∗ = c∗x, it follows that

sdpa
k+1 = sdpa

k − c∗zxz

y∗zEzxz
= sdza

k +
c∗x

y∗Ex
= sdza

k+1.

Because sdza
0 = sdpa

0 it follows that sdza
k = sdpa

k for all k ≥ 0.
A similar argument can be used for the case d 6= 0 (cf. theorem 3.2), by noting that

xz =
1

c∗x + d
x and yz =

−1
b∗y + d

y

are solutions of
(sEz −Az)xz = bz and (sEz −Az)∗yz = cz.

This equivalence strengthens the motivation in section 4 to use the SADPA and SAMDP
algorithms for the computation of the dominant zeros.

The fact that Hz(s) = H−1(s) can also be observed from the symmetric Bode plots in Fig. 3,
where it is clearly visible that the dominant zeros of H(s) (dips) become the dominant poles of
Hz(s) (peaks). A dominant zero of H(s) can now also be defined as a dominant pole of H−1(s).

Definition 3.4. A zero zi of an invertible transfer function H(s) is called dominant if it is a
dominant pole of H−1(s) (by definition 2.1).

3.3.2 MIMO transfer functions

Also for a square MIMO system Σ = (E,A, B, C, D) with transfer function H(s), a system Σz can
be defined so that Hz(s) is the inverse of H(s). The result for systems with D = 0 is:

Theorem 3.5. Let H(s) = CT (sE −A)−1B be the transfer function of Σ = (E,A, B, C, D = 0),
and let Hz(s) = CT

z (sEz − Az)−1Bz be the transfer function of Σz = (Ez, Az, Bz, Cz, Dz = 0),
where

Az =
[

A B
−CT 0

]
, Ez =

[
E 0
0 0

]
,

Bz =
[

B
Im

]
, Cz =

[
C
Im

]
, Dz = 0,

and Im ∈ Rm×m is the m×m identity matrix. Then Hz(s) = H−1(s).

Proof. Manipulation using the Schur complement of A in Az and basic linear algebra operations
show that H(s)Hz(s) = Im.

For non-singular D, a generalization of theorem 3.2 can be obtained, see also [28]:

Theorem 3.6. Let H(s) = CT (sE−A)−1B+D be the transfer function of Σ = (E,A, B, C, D non-singular),
and let Hz(s) = CT

z (sEz − Az)−1Bz + Dz be the transfer function of Σz = (Ez, Az, Bz, Cz, Dz),
where

Az = A−BD−1CT , Ez = E, Bz = BD−1,

Cz = −D−1C, Dz = D−1.

Then Hz(s) = H−1(s).

12
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(a) Bode plot of H(s).
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(b) Bode plot of Hz(s).

Figure 3: Bode plots of the New England test system (66 states, see also Fig. 1): (a) strictly proper
transfer function H(s) = W36(s)/Pmec36(s); (b) improper transfer function Hz(s) = H−1(s). The
dominant zeros of H(s) (dips) are the dominant poles of Hz(s) (peaks).
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Proof. The Sherman-Morrison-Woodbury formula [9, p. 50] gives

(sE − (A−BD−1CT )−1

= Ẽ(In −BD−1(Im + CT ẼBD−1)−1CT Ẽ),

where Ẽ = (sE − A)−1, and using basic matrix-vector operations it follows that H(s)Hz(s) =
Im.

The important consequence of these results is that the MIMO dominant pole algorithm SAMDP
can be used to compute the dominant zeros - via the dominant poles of the inverse system. In
fact, MDZA(E, A, B, C, D, s0) and MDPA(Ez, Az, Bz, Cz, Dz, s0) are equivalent processes
(cf. theorem 3.3). Similar results may be obtained for non-square MIMO systems, using pseudo-
inverses (see for instance [33]).

4 Computing more than one zero

It is not attractive to run (M)DZA for a number of different initial shifts to compute more than
one dominant zero, since there is a big chance of recomputing an already found zero. Deflation,
see for instance [26], is a well known technique to avoid this problem. For the computation of
many dominant poles, deflation combined with subspace acceleration and a selection strategy has
lead to the efficient Subspace Accelerated DPA (SADPA) [23] and SAMDP [22].

Although there are efficient methods for the computation of few eigenvalues of large scale
generalized eigenvalue problems of the form (5), such as the Jacobi-Davidson QZ method [8],
these methods are less suitable for the computation of dominant zeros, since they are designed to
compute a few eigenvalues near a specific target.

The dominant zeros of H(s) can be computed as the dominant poles of Hz(s), by applying
SADPA (or SAMDP) to the inverse systems as defined in section 3.3.1 (and section 3.3.2). This
is the most flexible approach, since it not only allows for the computation of the dominant zeros
in the sense of definition 3.4, but can also easily be adapted to compute the RHP zeros or lowest
damped zeros (by using a different selection criterion, see [23, 22] for more details).

The use of subspace acceleration has also the advantage of avoiding convergence to (extraneous)
zeros at infinity, since the selection criterion takes care of selecting the most dominant estimates
every iteration. Convergence to zeros at infinity occasionally (and eventually) happens for the
single zero DZA algorithm. Deflation by restriction [20] can be used to compute more than
one zero with the single zero DZA algorithm, with the advantage of not keeping a search space.
However, also this variant eventually converges to zeros at infinity, and furthermore, since it is a
Newton scheme, it may get stuck in stable period 2 cycle of the Newton scheme itself. Subspace
acceleration also prevents this and therefore the most attractive approach is to compute the zeros
via the poles of the inverse system.

Another advantage of using SADPA/SAMDP for the computation of the dominant zeros is
that a single algorithm can be used for both the computation of the dominant poles and zeros, so
that only one implementation is needed.

5 Numerical experiments and applications

There are several applications where it is needed to compute some specific zeros. In the following
subsections a number of SISO and MIMO transfer functions of the Brazilian Interconnect Power
System (BIPS) are considered. See [23, 22] for more information on BIPS. The practical imple-
mentations operate on the sparse descriptor system model. All experiments were carried out in
Matlab 7.2 on a SUN Ultra 20 (AMD Opteron 2.8GHz), using codes based on the algorithms
presented in [23, 22].
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Table 1: The 10 most dominant zeros and corresponding scaled residue matrix norms of the 2× 2
transfer function of BIPS, sorted in decreasing |Ri|/|Re(λi)|. Zeros found by SAMDP and/or
SAMDZ are marked with ’yes’.

Modes Residues SAMDP SAMDZA
Real Imaginary ||Ri||/Re(λi) s0 = 10i s0 = 10i
−3.138 · 10−2 ±4.356 1.010 yes
+4.484 · 10−2 ±1.154 1.761 · 10−1 yes
−3.059 · 10−1 ±3.667 6.238 · 10−2 yes
−6.203 · 10−1 ±7.402 3.709 · 10−2 yes yes
−1.391 · 10−1 ±0.2675 3.305 · 10−2 yes
−4.451 · 10−1 ±3.015 2.413 · 10−2 yes
−2.456 2.031 · 10−2

−2.455 1.711 · 10−2

−7.478 · 10−1 ±5.993 1.269 · 10−3

−2.403 8.678 · 10−3

5.1 A comparison

The SADPA [23] and SAMDP [22] algorithms can be used to compute the dominant poles of
the inverse system. To illustrate the importance of the selection criterion, SAMDP is compared
to SAMDZ, subspace accelerated MDZA, with a (naive) selection criterion: select the estimates
closest to the initial estimate s0. As an example, consider the 2 × 2 transfer function of BIPS,
whose inputs are the voltage references at the excitation systems for generators 1107 and 5061,
and whose outputs are the rotor speed deviations for the same two generators (see also [23]). Of
interest here are the non-minimum phase zero (in the right half plane), and a number of most
dominant zeros. The non-minimum phase (complex conjugate) zero 4.48·10−2±1.15i is exactly the
unstable (complex conjugate) pole associated with the North-South mode in the absence of power
system stabilizers at the two generating stations (see section 2.3 for the theoretical explanation).
SAMDP with s0 = 10i not only finds the RHP zero, but also computes many of the other dominant
zeros: in table 1, the 10 most dominant zeros are listed, and the zeros computed by SAMDP and
SAMDZ, respectively, are marked with ’yes’. Both methods were allowed to compute 30 (pairs
of) zeros. SAMDP needed 50 seconds (227 LU -factorizations), while SAMDZ needed 45 seconds
(141 LU -factorizations). Clearly, SAMDP applied to the inverse system is better than SAMDZ.
While SAMDP finds dominant zeros, SAMDZ finds zeros in the neighborhood of the initial shift.
Providing a different initial shift does not help SAMDZ, while SAMDP still finds the dominant
zeros.

5.2 Computing dominant poles and zeros by SAMDP

Fig. 4 shows the pole-zero map for the matrix transfer function V PSS(s)/V PSSd(s), of dimension
46 × 46, where vector V PSSd contains input disturbance channels to each of the 46 PSSs in the
system. The poles and zeros, and corresponding left and right eigenvectors, were obtained by use
of the Matlab QR and QZ eigenroutines (eig, schur) in 146 seconds and 408 seconds, respectively.
The zeros for this disturbance channel transfer function, as explained in section 2.3, are identical
to the system poles in the absence of PSSs. Note the BIPS would be unstable at this operating
point in the absence of PSSs: there are 3 unstable poles and 8 other poles (see the corresponding
circles in fig. 4) whose damping ratios are below 5%.

The SAMDP algorithm was applied to the inverse system in order to find rightmost dominant
zeros for this 46 × 46 transfer matrix. The results are shown in Fig. 5, where it is seen that
the algorithm was able to capture the most relevant zeros. The 35 (complex conjugated) zeros,
and corresponding left and right eigenvectors, were computed within 95 seconds (initial shift
s0 = 1i, 364 factorizations). Also the rightmost dominant poles computed by SAMDP (applied to
the original system) are shown (s0 = 5i, 35 (complex conjugated) triplets computed within 100
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Figure 4: Pole-zero map of the 46 × 46 transfer matrix for disturbance channels. Circles denote
the transfer function zeros and stars denote the system poles. Complex zeros (and poles) appear
in complex conjugate pairs, but here only the upper half of the complex plane is shown. Left half
plane poles and zeros to the right of the solid line have damping ratio below 5%.

seconds and 408 factorizations). In order to select the rightmost zeros and poles, the selection
criterion used in SAMDP was adapted to select the approximations with smallest damping ratio.
Note that the CPU time required to compute the dominant poles and zeros is less than the time
needed to compute all eigentriplets of the full state space matrices (via QZ). For larger systems it
is not feasible to compute all eigentriplets, while SAMDP can be applied to very large systems to
compute the dominant poles and zeros (and corresponding left and right eigenvectors).

The results not only confirm that the dominant zeros can be computed via the dominant poles
of the inverse system, but also show the flexibility of the SADPA/SAMDP algorithms when using
different selection criteria.

6 Conclusions

This paper described some control system applications where there is need for the computation
of scalar as well as multivariable tranfer function zeros. It was shown that dominant zeros can be
computed as the dominant poles of the inverse transfer function, by the recent, efficient SADPA
and SAMDP algorithms. A new inverse system formulation, which is valid even for strictly proper
transfer functions, is described in the paper. This is a new finding, which is important from
practical as well as theoretical viewpoints.

Various uses for transfer function zeros are described, and numerical results are given for
multivariable system models of realistic power systems, showing the practical value and flexibility
of the algorithms described in this paper.
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Figure 5: Pole-zero map of the 46×46 transfer matrix for disturbance channels, showing poles and
zeros found by SAMDP. Circles denote the transfer function zeros and stars denote the system
poles. Complex zeros (and poles) appear in complex conjugate pairs, but here only the upper half
of the complex plane is shown. Left half plane poles and zeros to the right of the solid line have
damping ratio below 5%.
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