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Abstract

We study quasi-periodic tori under a normal-internal resonance, possibly with multiple eigen-
values. Two non-degeneracy conditions play a role. The first of these generalizes invertibility
of the Floquet matrix and prevents drift of the lower dimensional torus. The second con-
dition involves a Kolmogorov-like variation of the internal frequencies and simultaneously
versality of the Floquet matrix unfolding. We focus on the reversible setting, but our results
carry over to the Hamiltonian and dissipative contexts.

MSC-class: 37J40

1 Introduction

Resonances are at the core of the problems one has to solve when trying to prove quasi-periodic
stability – persistence of invariant tori under small perturbation. Let T

n = R
n/(2πZ)n =

(R/(2πZ))n be the standard n-torus, with co-ordinates x = (x1, x2, . . . , xn)(mod2π). An invari-
ant torus T of a vector field X is called parallel if a smooth conjugation exists of the restriction
X|T with a constant vector field ẋ = ω on T

n. The vector ω = (ω1, ω2, . . . , xn) ∈ R
n is the

(internal) frequency vector of T . The parallel torus is quasi-periodic when the frequencies are
independent over the rationals.

In the perturbation problem we consider the phase space N = T
n ×R

m ×R
2p = {x, y, z} where

we are dealing with a ‘dominant part’

ẋ = ω, ẏ = 0, ż = Ωz, or X = ω∂x + Ωz∂z (1.1)

in vector field notation. We assume that

Ω = diag [A1, A2, . . . , Ap], where Aj =

(
0 αj

−αj 0

)
,

∗Dept. of Mathematics and Computing Science, University of Groningen, POBox 800, 9700 AV Groningen,
The Netherlands

†Dept. of Mathematics, Imperial College London, Campus South Kensington, Queen’s Gate, London, SW72AZ,
UK

‡Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands
§Dept. of Pure Mathematics and Computeralgebra, University of Gent, Krijgslaan 281, 9000 Gent, Belgium

1



meaning that the invariant torus under consideration is elliptic with normal frequencies α1, α2, . . . , αp.

For persistence of such elliptic tori Ty = T
n×{y}×0 in [12, 13, 14, 31] the Diophantine conditions

| 〈k, ω〉 + 〈`, α〉 |≥ γ

|k|τ for all (k, `) ∈ Z
n+p with k 6= 0 and |`| ≤ 2 (1.2)

are imposed, also compare with [24]. Here γ > 0 and τ > n − 1 are constants and we use the

following notation: 〈k, ω〉 =
∑

kjωj and |k| =
∑

|kj |.
These strong non-resonance conditions exclude in fact four types of resonances. An internal
resonance

〈k, ω〉 = 0 for some 0 6= k ∈ Z
n

prevents the parallel flow on Ty to have a dense orbit whence the invariant torus is not a
(minimal) dynamical object, but rather the union of closed invariant subtori. One cannot expect
such an n-torus to persist, cf. [32, 35], for the same reason that a circle consisting of equilibria
breaks up under perturbation (generically with only finitely many equilibria in the perturbed
system). Such resonances are excluded by (1.2) when taking ` = 0.

For |`| = 1 the inequalities (1.2) constitute the first Mel’nikov condition, cf. [3, 30, 40], and
concern the normal-internal resonances

〈k, ω〉 = αj with fixed k ∈ Z
n and j ∈ {1, . . . , p}. (1.3)

Passing to co-rotating co-ordinates on N yields this resonance with k = 0, cf. [10, 16]. This is a
2-step procedure. First k is brought into the form k = (k1, 0, . . . , 0) by means of a preliminary
transformation

N −→ N, (x, y, z) 7→ (σx, y, z) (1.4)

with σ ∈ SL(n, Z). For the second step we write zI = (z1, z2, . . . , z2j−2, z2j+1, . . . , z2p) and zII =
(z2j−1, z2j) and complexify zII

∼= z2j−1 + iz2j . Then we perform a Van der Pol transformation

N −→ N, (x, y, z) 7→ (x, y, zI , e
ik1x1zII). (1.5)

The transformed vector field has a vanishing normal frequency αj = 0. Hence, already constant
perturbations

β∂z = β2j−1∂z2j−1
+ β2j∂z2j

, β2j−1, β2j ∈ R

make the tori Ty move in a way that cannot be compensated on the linear level.

Remark. When taking (generic) higher order terms of the unperturbed vector field into account
the resulting bifurcation scenario turns out to be quasi-periodically stable (in an appropriate
sense) as well, cf. [5, 10, 20, 21, 38].

The remaining possibility |`| = 2 in (1.2) excludes the normal-internal resonances

〈k, ω〉 = αi ± αj with fixed k ∈ Z
n and i 6= j ∈ {1, . . . , p} (1.6)

and
〈k, ω〉 = 2αj with fixed k ∈ Z

n and j ∈ {1, . . . , p}. (1.7)
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For (1.6) one can again achieve k = 0 in co-rotating co-ordinates, cf. [40], turning this normal-
internal resonance into the normal resonance

0 6= αi = ±αj, i 6= j ∈ {1, . . . , p}.

While now the invertibility of Ω does yield quasi-periodic stability of Ty, see [11, 17] and Corol-
lary 4 in Section 2.3, the normal behaviour still may be drastically affected. Using the y-variable
as a parameter, e.g. the normal linear matrix




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




in a conservative setting unfolds (or deforms) both to elliptic and to hyperbolic behaviour.

Remark. Here it is the bifurcation scenario involving the surrounding tori of dimension n + 1
and n+2 that can only be captured by taking higher order terms of the unperturbed vector field
into account; quasi-periodic stability was achieved in [7, 9, 21, 22] for the simplest conservative
bifurcation scenarios.

The remaining case (1.7) is meaningful only if not already implied by (1.3), so assume that (1.2)
holds with |`| ≤ 1. Then we can still achieve k = 0 in co-rotating co-ordinates, but now on a
2-fold covering M −→ N defined as follows. The preliminary transformation (1.4) brings the
resonance vector k into the form k = (k1, 0, . . . , 0) with k1 odd. The Van der Pol transformation
is no longer a mapping from N to itself, but a covering mapping from M = T

n × R
m × R

2p

onto N defined by

Π : M −→ N, (x1, x∗, y, z) 7→ (2x1, x∗, y, zI , e
ik1x1zII).

Here x1 ∈ T
1 and x∗ = (x2, . . . , xn) ∈ T

n−1. The deck group Z2 = {Id, F} of this 2-fold covering
is generated by the involution

F : M −→ M, (x1, x∗, y, zI , zII) 7→ (x1 − π, x∗, y, zI ,−zII). (1.8)

This means that
Π ◦ F = Π.

Remarks.

(i) Compare with [10, 16, 40], also see [5, 8, 14]. Observe the one-to-one correspondence
between vector fields X on N and their Z2-equivariant lifts X̂ on M. Often it is more
convenient to work with such equivariant vector fields on M. The factor 2 in the reso-
nance (1.7) implies that one 2π-translation in x1 yields 1

2
k1 /∈ Z normal rotations, and

only after a second 2π-translation in x1 does zII return to its original position. Instead
of compensating this by taking x1 7→ 2x1 in the first factor one can also consider the
first factor R/(4πZ) twice as long whence the covering mapping ξ1 7→ x1 consists simply
in taking ξ1(mod2π) instead of 4π, cf. [16]. We take this point of view in Example 2 in
Section 5, but for the theory to be developed in Sections 2 to 4 we prefer to unify notation
and work on one and the same phase space M .
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(ii) Presently we thus consider persistence of parallel X-invariant n-tori Ty ⊂ M under Z2-
equivariant perturbations of X. The corresponding quasi-periodic stability is stated in
Corollary 5 of Section 2.3. While problematic constant contributions β∂z on M are ruled
out by Z2-equivariance, higher order terms determine how invariant tori T

n×{y}×{z(y)}
bifurcate off from Ty = T

n × {y} × {0}.

(iii) The resulting frequency halving (or quasi-periodic period-doubling) bifurcation scenarios
are quasi-periodically stable in the dissipative [5] and Hamiltonian [21] settings and sim-
ilarly reversible frequency-halving bifurcations may be expected to occur if appropriate
non-degeneracy conditions on the higher order terms are fulfilled.

This paper fits in the framework of parametrised KAM theory [5, 7, 9, 10, 13, 21] that originates
from Moser [31]; in fact we present a generalization of [11, 12, 14], as well as of [17, 22, 24].
We give explicit formulations for reversible vector fields, but the results remain valid for e.g.
dissipative, Hamiltonian or volume-preserving systems, where equivariance is also optional. Our
approach allows for normal-internal resonances (1.6) and (1.7) with k ∈ Z

n fixed. The ensu-
ing deformations of the linear behaviour coming from the perturbation are taken care of by
considering a versal unfolding of the linear part ż = Ωz of the unperturbed vector field, i.e.,
an unfolding that already contains all possible deformations. The necessary parameters are
provided by y ∈ R

m; the possibility that m ≥ n distinguishes the reversible context from the
Hamiltonian setting. An alternative is to let the system depend on external parameters λ, where
variation of (y, λ) versally unfolds the linear part.

In [3, 40]1 the second Mel’nikov condition ((1.2) with |`| = 2) is avoided completely, i.e. also
simultaneous normal-internal resonances (1.6) and (1.7) with differing k ∈ Z

n are allowed. The
price to pay for this approach is that any control on the linear behaviour is completely lost.
For instance, double eigenvalues ±iα1 = ±iα2 generically unfold to a Krein collision, where an
elliptic torus evolves a 4-dimensional normal direction of focus-focus type. Such changes cannot
be captured without persistence of the (normal) linear behaviour.

Remarks.

(i) Adding appropriate non-linear terms to the unperturbed system the Krein collision results
in a quasi-periodic reversible Hopf bifurcation, and the quasi-periodic stability of the whole
bifurcation scenario could be shown in [7].

(ii) In the reversible setting the resonance (1.3) may still be tractable by our methods, see
Corollary 6 in Section 2 and Example 1 in Section 5. We expect quasi-periodic reversible
pitchfork bifurcations to occur if appropriate non-degeneracy conditions on the higher
order terms (as in [28, 29, 34] for the periodic case n = 1) are fulfilled.

(iii) Multiple normal-internal resonances (1.6) and (1.7) with k ∈ Z
n fixed occur in a resonant

quasi-periodic reversible Hopf bifurcation. In Example 2 in Section 5 we show persistence
of the initial family of invariant n-tori. For n = 1 the full bifurcation scenario has been
addressed in [6] and it would be interesting to develop the extension from periodic to
quasi-periodic orbits.

1These papers consider Hamiltonian systems, but we expect the results to carry over to the reversible context.
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When the integer vector ` ∈ Z
p has the form

` = (0, . . . , 0, l, 0, . . . , 0) with l ∈ N := {l ∈ Z | l ≥ 1} (1.9)

then
〈k, ω〉 + 〈`, α〉 = 0

is called a k:l resonance. In this generality one may pass to co-rotating co-ordinates on an l-fold
covering space M = T

n × R
m × R

2p, where the deck group Zl is generated by

Fl : M −→ M, (x, y, z) 7→ (x1 −
2π

l
, x∗, y, zI , e

2πi

l zII), (1.10)

again using complex notation and thereby generalizing the above case l = 2.

On the covering space the k:l resonance 〈k, ω〉 + lαj = 0 has turned into αj = 0. Under the
‘zeroeth Mel’nikov condition’ (i.e., (1.2) with |`| = 0) we may normalize a given perturbation,
pushing the torus symmetry (ξ, x) 7→ ξ + x through the Taylor series of the perturbed vector
field. Truncating the normal form yields a polynomial vector field

ẋ = ω + f(y, z)
ẏ = g(y, z)

ż2j−1 = αjz2j + h2j−1(y, z)
ż2j = −αjz2j−1 + h2j(y, z)

with all monomials in h(y, z) of degree 2i(l− 1)lj , i, j ∈ N0 in the z-variables. In particular, the
lowest order terms (in what concerns the resonance (1.9)) are of degree l − 1 and thus constant
for l = 1, linear for l = 2 and non-linear for l ≥ 3. Correspondingly, only the case l = 1 has to
be excluded when proving quasi-periodic stability.

Remark. Appropriate higher order terms in the unperturbed vector field for l ≥ 2 lead to
subharmonic bifurcations of order l, generalizing the frequency-halving bifurcation.

This paper is organized as follows. The next section contains a precise formulation of our results.
We treat the cases of multiple eigenvalues and of resonances (1.9) with l ≥ 2 in a unified fashion,
working in the latter case entirely in co-rotating co-ordinates on the covering space M of N . We
include the possibility of several multiple eigenvalues, in particular a resulting zero eigenvalue
(on the covering space) may have non-trivial multiplicity as well. In Section 3 the necessary
versal unfoldings of the linear part Ω are explicitly constructed. A proof of Theorem 3 constitutes
Section 4, and we end with a concluding section containing two illustrative examples.

2 Perturbation problem

We work on the phase space M = T
n × R

m × R
2p, where T

n = (R/2πZ)n is the n-torus on
which we use coordinates x = (x1, . . . , xn) (mod 2π), while on R

m and R
2p we use respectively

y = (y1, . . . , ym) and z = (z1, . . . , z2p). In such coordinates a vector field on M takes the form

ẋ = f(x, y, z), ẏ = g(x, y, z), ż = h(x, y, z),

or in vector field notation:

X(x, y, z) = f(x, y, z)∂x + g(x, y, z)∂y + h(x, y, z)∂z . (2.1)
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We assume that the vector field X depends analytically on all variables, including possible
parameters which we suppress for the moment; referring to [14, 24, 33] we note that our results
remain valid when ‘analyticity’ is replaced by ‘a sufficiently high degree of differentiability’.

To define reversibility we consider an involution (i.e. G2 = I)

G : M −→ M, (x, y, z) 7→ (−x, y,Rz), (2.2)

with R ∈ GL(2p, R) a linear involution on R
2p such that

dimFix(R) = dim
{
z ∈ R

2p | Rz = z
}

= p.

The vector field X is then called G-reversible (or reversible for short) if

G∗(X) = −X.

Using (2.1) this reversibility condition takes the explicit form

f(−x, y,Rz) = f(x, y, z),

g(−x, y,Rz) = −g(x, y, z),

h(−x, y,Rz) = −Rh(x, y, z),

valid for all (x, y, z) ∈ M .

Following [12, 13, 14, 24] the vector field X is called integrable if it is equivariant with respect
to the group action

T
n × M −→ M, (ξ, (x, y, z)) 7→ (ξ + x, y, z)

of T
n on M , or in other words, if the functions f , g and h in (2.1) are independent of the

x-variable(s). Such an integrable vector field

X(x, y, z) = f(y, z)∂x + g(y, z)∂y + h(y, z)∂z (2.3)

is reversible if

f(y,Rz) = f(y, z), g(y,Rz) = −g(y, z) and h(y,Rz) = −Rh(y, z) (2.4)

for all (y, z) ∈ R
m × R

2p; this implies g(y, z) = 0 for all (y, z) ∈ R
m × Fix(R).

Now suppose that h(0, 0) = 0, i.e. the n-torus T0 = T
n × {0} × {0} is invariant under the flow

of the vector field X. While it is always possible to translate a single given torus to T0, it is an
assumption on the system that this torus can be embedded in a whole family Ty = T

n×{y}×{0}
of invariant tori parametrised by y. This can be equivalently stated as

h(y, 0) = 0 for all y ∈ R
m, (2.5)

and the non-degeneracy condition bht(i) in Definition 1 (see below) ensures that this assumption
can be justified. For each ε > 0 the scaling operator

Dε : M −→ M, (x, y, z) 7→
(
x,

y

ε
,

z

ε2

)
(2.6)
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commutes with G and with the T
n-action on M , and hence preserves reversibility and integra-

bility. Using (2.3) and the linearity of Dε the push-forward (Dε)∗X of X under Dε takes the
form

(Dε)∗X(x, y, z) = Dε

(
X

(
D−1

ε (x, y, z)
))

= f(εy, ε2z)∂x +
1

ε
g(εy, ε2z)∂y +

1

ε2
h(εy, ε2z)∂z.

We can use (2.4) to find that N(X) := lim
ε→0

(Dε)∗X is given by

N(X)(x, y, z) = ω∂x + Ω z ∂z, (2.7)

with
ω = f(0, 0) and Ω = Dzh(0, 0).

This makes (2.7) the dominant part of X, justifying our starting point (1.1) in the introduction.
The vector field N(X) is again reversible and integrable; it is characterised by the frequency
vector ω = (ω1, . . . , ωn) ∈ R

n which describes the flow along the invariant tori Ty, and by the
matrix Ω ∈ gl(2p; R) which determines the linear flow in the z-direction normal to the family of
invariant tori. Since Ω does not depend on the angular variable x ∈ T

n the vector field N(X) is
in normal linear Floquet form.

The Floquet matrix Ω is infinitesimally reversible, satisfying ΩR = −RΩ because of the re-
versibility of the vector field X. We denote the subspace of infinitesimally reversible linear
operators on R

2p by gl−(2p; R) and by gl+(2p; R) the subspace of all R-equivariant linear oper-
ators on R

2p, i.e.
gl±(2p; R) = {Ω ∈ gl(2p; R) | ΩR = ±RΩ}.

Observe that if µ ∈ C is an eigenvalue of Ω ∈ gl−(2p; R) then so is −µ. Hence, the eigenvalues
of Ω can be grouped into complex quartets, conjugate purely imaginary pairs ±iα, symmetric
real pairs and the eigenvalue zero with even algebraic multiplicity.

2.1 Non-degeneracy conditions

The adjoint action of GL(2p; R) on gl(2p; R) is defined in the usual way by

Ad : GL(2p; R) × gl(2p; R) −→ gl(2p; R), (A,Ω) 7→ Ad(A) · Ω := AΩA−1; (2.8)

both gl+(2p; R) and gl−(2p; R) are invariant under Ad(A) if A ∈ GL+(2p; R). Consequently we
can consider the adjoint action of GL+(2p; R) on gl−(2p; R), and the orbit

O(Ω0) := {Ad(A) · Ω0 | A ∈ GL+(2p; R)}

of Ω0 ∈ gl−(2p; R) under this action; since GL+(2p; R) is algebraic it follows that O(Ω0) is a
smooth submanifold of gl−(2p; R). The tangent space at Ω0 to this orbit is given by

TΩ0
O(Ω0) = {ad(A) · Ω0 = AΩ0 − Ω0A | A ∈ gl+(2p; R)} = ad(Ω0)

(
gl+(2p; R)

)
, (2.9)
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where we have used the fact that ad(A) · Ω = − ad(Ω) · A for all A,Ω ∈ gl(2p; R). An unfolding
of Ω0 is a smooth mapping

Ω : R
s −→ gl−(2p; R), µ 7→ Ω(µ)

such that Ω(0) = Ω0. An unfolding is versal if it is transverse to O(Ω0) at µ = 0, which requires
that s ≥ codimO(Ω0); a versal unfolding with the minimal number of parameters (i.e. with
s equal to the codimension of O(Ω0) in gl−(2p; R)) is called miniversal. Using the Implicit
Function Theorem it is easily seen that given a miniversal unfolding Ω : R

s −→ gl−(2p; R) of

Ω0 ∈ gl−(2p; R) we can write each Ω̃ ∈ gl−(2p; R) near Ω0 in the form Ω̃ = Ad(A) ·Ω(µ) for some

(A,µ) ∈ gl+(2p; R) × R
s close to (Id, 0) and depending smoothly on Ω̃. In case all eigenvalues

of Ω0 are different from each other a miniversal unfolding amounts to simultaneously deforming
the eigenvalues, see [14]. Our approach yields persistence results independent of the eigenvalue
structure of Ω0 (see [39] for some other step towards such general persistence results). For more
details on versal, miniversal (or universal) unfoldings we refer to [1, 2, 19].

In order to define the non-degeneracy of (2.3) at the torus T0 = T
n ×{0} × {0} we consider the

subspaces
X±G

lin =
{
ω∂x + Ωz∂z | ω ∈ R

n,Ω ∈ gl±(2p; R)
}

of the spaces X−G of all G-reversible vector fields on M and X+G of all G-equivariant vector
fields, satisfying G∗(X) = +X. For X ∈ X−G the adjoint operator

adN(X) : X −→ X , Y 7→ [N(X), Y ]

maps X±G into X∓G; a similar statement is true for X±G
lin .

Our interest concerns purely G-reversible vector fields, and G-reversible vector fields that are
furthermore equivariant with respect to (1.8), or more generally with respect to (1.10). To allow
for a unified formulation of our results we define a reversing symmetry group Σ and a character
(a group homomorphism) χ : Σ −→ {±1} as follows:

(i) In the purely reversible case we set Σ := {id, G} and χ(G) := −1.

(ii) In the equivariant-reversible case we define Σ as the group generated by G and Fl (see
(1.10)), and define χ by χ(G) := −1 and χ(Fl) := 1.

In both cases Σ is isomorphic to Z2 n Zl, the dihedral group of order 2l. When l = 1 the
generator F1 = Id of course is superfluous. For both cases we put

X+ = {X ∈ X | E∗(X) = X for all E ∈ Σ}
X− = {X ∈ X | E∗(X) = χ(E)X for all E ∈ Σ}

together with X±
lin = X±G

lin ∩ X±. Furthermore we let B+ and B− consist of the constant vector
fields in X+ and X−, respectively.

Definition 1 (Broer, Huitema and Takens [14]) The parametrised vector field Xλ with lin-
earization N(Xλ)(x, y, z) = ω(λ)∂x + Ω(λ)z∂z is non-degenerate at λ = λ0 ∈ R

s if

bht(i) ker adN(Xλ0
) ∩ B+ = {0};
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bht(ii) at λ = λ0 the mapping (ω,Ω) : R
s −→ R

n × gl−(2p; R), λ 7→ (ω(λ),Ω(λ)) is transverse
to {ω(λ0)} ×O (Ω(λ0)).

The two non-degeneracy conditions bht(i) and bht(ii) generalize the condition that adN(Xλ0
)

has to be invertible, a requirement that lies at the basis of Mel’nikov’s conditions ((1.2) with
|`| 6= 0). One also speaks of BHT non-degeneracy. Compared to the formulation in [14], § 8a2
the requirement that Ω(λ0) have only simple eigenvalues is dropped. The extension to multiple
normal frequencies was developed in [11, 17, 22] for invertible Ω(λ0); we return to the original
formulation of bht(i).

Property bht(i) generalizes the invertibility condition required in the definition of non-degeneracy
as it was formulated in [11, 12, 17, 22]. What is really needed for the proofs is the invertibility
of the linear operator

adN(Xλ0
) : B+ −→ B− (2.10)

and since dimFix(R) = dimFix(−R) this is fully captured by bht(i). Computing

adN(Xλ0
)(β∂z) = −Ω(λ0)β∂z (2.11)

shows that this certainly holds true if detΩ(λ0) 6= 0. However, the condition bht(i) can still be
satisfied if det Ω(λ0) = 0, for example when ker(Ω(λ0)) ⊂ Fix(−R). The Floquet matrix Ω(λ0)
may have zero eigenvalues as long as the corresponding eigenvectors do not lie in B+.

The condition bht(i) is (together with h(0, 0) = 0) also sufficient to justify the assumption (2.5),
as follows. The symmetry property (Fl)∗X = X takes the explicit form

f(y, Slz) = f(y, z), g(y, Slz) = g(y, z) and h(y, Slz) = Slh(y, z) (2.12)

where
Sl(z) = Sl(zI , zII) = (zI , e

2πi

l zII).

Since Fix(e
2πi

l ) = {0} (l ≥ 2), in the equivariant-reversible case this immediately implies
h(y, zI , 0) = 0 and B = Fix(Sl). We therefore concentrate on the purely reversible case
(Σ = {id, G}), assuming that h(0, 0) = 0 and that bht(i) holds, with N(Xλ0

) = ω0∂x + Ω0z∂z

and Ω0 = Dzh(0, 0) ∈ gl−(2p; R). Since h(y,Rz) = −Rh(y, z), by (2.4), we can consider h as
a mapping from R

m × Fix(R) into Fix(−R). As such, the derivative Dzh(0, 0) is given by the
restriction of Ω0 to Fix(R), considered as a linear mapping from Fix(R) into Fix(−R). By our
assumption bht(i) and dimFix(R) = dimFix(−R) this derivative is an isomorphism, and by
the Implicit Function Theorem there exists an analytic mapping z̃ : R

m −→ Fix(R) such that
h(y, z̃(y)) = 0 for all sufficiently small y ∈ R

m; the reversibility by (2.4) implies g(y, z̃(y)) = 0.
This gives us a family T

n × {y} × {z̃(y)}, y ∈ R
m of invariant tori which can be brought in a

more convenient form by using the diffeomorphism

Ψ : M −→ M, (x, y, z) 7→ (x, y, z̃(y) + z)

which is G-equivariant and commutes with the T
n-action on M . Therefore the pull-back Ψ∗(X)

is still G-reversible and integrable, while

Ψ−1(Tn × {y} × {z̃(y)}) = T
n × {y} × {0}

is a Ψ∗(X)-invariant n-torus for each y ∈ R
m near 0.
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Remarks.

(i) Up to now, the condition detΩ0 6= 0 was one of the central assumptions for normal linear
stability in the general dissipative context as well as in the volume preserving, symplectic
and reversible contexts. Replacing this condition by bht(i) allows to extend the known
theorems to the singular case of eigenvalue zero.

(ii) Property bht(i) is persistent under small variation of λ near λ0 because of the upper-semi-
continuity of the mapping λ 7→ dimkerΩ(λ).

Property bht(ii) means that locally the frequency vector ω(λ) varies diffeomorphically with λ,
while ‘simultaneously’ the local family λ 7→ Ω(λ) is a versal unfolding of Ω(λ0) in the sense of
[1, 2]. For earlier usage of this method in reversible kam Theory, see [11, 12, 17]. Below, in
Section 3 we develop an appropriate versal unfolding that depends linearly on λ.

2.2 Diophantine conditions

When trying to answer the persistence problem for Ty it is convenient to focus on (a sufficiently
small neighbourhood of) each of the invariant tori Tν (ν ∈ R

m) separately, considering the
label ν ∈ R

m of the chosen torus as a parameter; formally this can be done by a localizing
transformation, setting

y = ν + yloc and Xloc(x, yloc, z; ν) := X(x, ν + yloc, z). (2.13)

This way we get a parametrised family of reversible and integrable vector fields, still on the
same state space M ; in this localized situation we concentrate on the persistence in a small
neighbourhood of the invariant torus T0, corresponding to (yloc, z) = (0, 0). For simplicity we
absorb the additional parameter ν with the other parameters which we may have and we also
drop the subscript ‘loc’.

The non-degeneracy condition bht(ii) requires that s ≥ n + codimO (Ω(λ0)); in case all pa-
rameters originate from a localization procedure this means that we should have m ≥ n +
codimO (Ω(λ0)). Assume now that Xλ is non-degenerate at λ0 ∈ R

s, and let (ω0,Ω0) :=
(ω(λ0),Ω(λ0)). Using a re-parametrisation and a parameter-dependent linear transformation in
the z-space we may assume that the parameter λ takes the form λ = (ω, µ, µ̃) and belongs to a
neighbourhood P of λ0 := (ω0, 0, 0) in R

n ×R
c ×R

s−n−c, while the dominant part of the vector
field reads

N(X)(x, y, z, ω, µ, µ̃) = ω∂x + Ω(µ)z∂z, (2.14)

where Ω : R
c −→ gl−(2p; R) is a given miniversal unfolding of Ω0. The µ̃-part of the parameter

does not appear in this expression for the (unperturbed) vector field X; although it might appear
explicitly in the perturbations it turns out that µ̃ plays no role at all in the further analysis.
Therefore we suppress µ̃ from now on and just keep the essential parameters (ω, µ) and set
s = n + c, with c = codimO(Ω(0)). The question of a particular choice for the miniversal
unfolding Ω(µ) appearing in (2.14) is addressed in Section 3 below.

Recall that we addressed in the introduction normal-internal resonances with a single k ∈ Z. To
prevent further resonances (with different integer vectors) we now re-formulate (1.2). Introduce
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for Ω ∈ gl−(2p; R) the normal frequency mapping α : gl−(2p; R) −→ R
2p where the compo-

nents of α(Ω) are equal to the imaginary parts of the eigenvalues of Ω ∈ gl−(2p; R). Higher
multiplicities are taken into account by repeating each eigenvalue as many times as necessary.

Definition 2 A pair (ω,Ω) ∈ R
n×gl−(2p; R) is said to satisfy a Diophantine condition if there

exist constants τ > n − 1 and γ > 0 such that

| 〈k, ω〉 + 〈`, α(Ω)〉 |≥ γ|k|−τ (2.15)

for all k ∈ Z
n \ {0} and ` ∈ Z

2p with |`| ≤ 2.

Remarks.

(i) For small γ > 0 the Diophantine subset (Rn × R
2p)γ given by

{(ω, α) ∈ R
n × R

2p | |〈k, ω〉 + 〈`, α〉| ≥ γ|k|−τ ,∀k ∈ Z
n \ {0},∀` ∈ Z

2p : |`| ≤ 2} (2.16)

forms a nowhere dense subset of R
n × R

2p of large measure (e.g., see [14, 18]). The same
remains true when in this statement we replace R

2p by any subspace V of R
2p which

is defined by a finite number of equations of the form αi = 0, αi = αj or αi = −αj

(1 ≤ i, j ≤ 2p, i 6= j).

(ii) The condition (2.15) is independent of the way in which we have ordered the components
of α(Ω); also, if (ω,Ω) satisfies (2.15) then the same is true for all (ω, Ω̃) with Ω̃ ∈ O(Ω).

(iii) Given a miniversal unfolding Ω(µ) of Ω0 = Ω(0) we write α(µ) for the normal frequency
vector α(Ω(µ)). The parameter values µ ∈ R

c for which all eigenvalues of Ω(µ) are simple
form an open and dense subset of R

c. The mapping µ 7→ α(µ) is at such parameter values
a smooth submersion of R

c onto an appropriate subspace V of R
2p of the form mentioned

in remark (i) (keeping in mind the eigenvalue structure of Ω ∈ gl−(2p; R)).

(iv) Combining the remarks (ii) and (iii) we conclude that there is an open and dense subset
of our parameter space P ⊆ R

s where the set

Pγ :=
{
(ω, µ) ∈ P | (ω, α(µ)) ∈ (Rn × R

2p)γ
}

is nowhere dense but still of large measure; this measure increases by taking smaller values
of γ. For simplicity we say that Pγ is a ‘Cantor set’.

Similarly, we define for each Γ ⊂ P the associated Diophantine subset

Γγ :=
{
λ ∈ Γ | (ω(λ), α(Ω(λ))) ∈ (Rn × R

2p)γ
}

.

When Γ is a small neighbourhood of some λ0 ∈ P where X is non-degenerate then Γγ is nowhere
dense but with large measure (provided that γ is sufficiently small).
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2.3 Main results

We are given a family of integrable vector fields

X(x, y, z, ω, µ) = [ω + f(y, z, ω, µ)] ∂x + g(y, z, ω, µ) ∂y + [Ω(µ)z + h(y, z, ω, µ)] ∂z (2.17)

on the product M×P of phase space M = T
n×R

m×R
2p and parameter space P ⊆ R

s = R
n×R

c

with reversing symmetry group Σ generated by (2.2) and (1.10). For l = 1 the latter is just the
identity, but for l ≥ 2 the composition

Hl := Fl ◦ G : M −→ M, (x, y, z) 7→ (
2π

l
− x1, x∗, y, SlRz), (2.18)

is another reversing symmetry and one may also characterise the vector fields in X − as being
reversible with respect to the two mappings G and Hl. Note that in this characterisation Hl

may be replaced by F i
l ◦ G for any i relative prime to l.

The coefficient functions f, g and h entering X are higher order terms in z, satisfying f(y, 0, ω, µ) =
g(y, 0, ω, µ) = h(y, 0, ω, µ) = Dzh(y, 0, ω, µ) = 0 for all y ∈ R

m, (ω, µ) ∈ P . Within X− we con-
sider perturbations Z of X and write

Z(x, y, z, ω, µ) =
[
ω + f̃(x, y, z, ω, µ)

]
∂x + g̃(x, y, z, ω, µ) ∂y +

[
Ω(µ)z + h̃(x, y, z, ω, µ)

]
∂z;

here the coefficient functions f̃ , g̃ and h̃ may contain lower order terms but are close to f, g
and h, respectively. As far as Diophantine tori are concerned our goal is to conjugate Z to X.

Theorem 3 Let X ∈ X− be a family of Σ-reversible integrable vector fields that is non-
degenerate at λ0 = (ω0, 0) ∈ P . Then there exists γ0 > 0 such that for all 0 < γ < γ0 the
following is true. There exists a neighbourhood Γ of λ0, neighbourhoods Y and Z of the origin
in respectively R

m and R
2p, and a neighbourhood U of X in the compact-open topology on X −

such that for each Z ∈ U one can find a mapping Φ : T
n × Y ×Z × Γ −→ M × P of the form

Φ(x, y, z, ω, µ) =
(
x + Ũ(x, ω, µ), y + Ṽ (x, y, ω, µ), z + W̃ (x, y, z, ω, µ), ω + Λ̃1(ω, µ), µ + Λ̃2(ω, µ)

)

for which the following holds.

(i) The mapping Φ is Σ-equivariant, real-analytic in the x-variable and normally affine in the
y and z variables.

(ii) The mapping Φ is C∞-close to the identity and is a C∞-diffeomorphism onto its image.

(iii) The restriction of Φ to the Cantor set T
n × {0} × {0} × Γγ of Diophantine X-invariant

tori conjugates X to Z. The restiction of Φ to T
n ×Y ×Z ×Γγ also preserves the normal

linear behaviour to these invariant tori.

In terms of [13, 14], the conclusion of Theorem 3 expresses that the family X is quasi-periodically
stable, i.e., structurally stable on a union of (Diophantine) quasi-periodic tori. This allows to con-
dense Theorem 3 to the statement that non-degenerate Σ-reversible integrable vector fields are
quasi-periodically stable.2 Quasi-periodic stability implies that for every small perturbation Z

2In [11] one speaks of ‘normal linear stability’ instead.
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there exists a Z-invariant ‘Cantor set’ V ⊂ M × P which is a C∞-near-identity diffeomorphic
image of the foliation T

n×{0}×{0}×Γγ of n-tori. In the tori this diffeomorphism is an analytic
conjugacy from X to Z, which also preserves the normal linear behaviour.

Remarks.

(i) Theorem 3 generalizes the results on persistence of lower-dimensional tori in reversible
systems in [11, 12, 13, 17, 24, 31, 37]; also compare with Corollary 4 below.

(ii) The neighbourhood Γ depends on the choice of γ, the neighbourhoods Y and Z depend
on γ and Γ, and the neighbourhood U depends on γ, Γ, Y and Z.

(iii) By considering different choices for ω0 one can in the foregoing statement replace ‘a neigh-
bourhood Γ of (ω0, 0) in P ’ by ‘a neighbourhood Γ of K ×{0} in P ’, where K ⊂ R

n is any
given bounded subset. Under appropriate conditions [13], K may also be unbounded.

(iv) The condition that Φ be a full conjugation from X to Z means that Φ∗(X) = Z, or equiva-
lently

(
Φ−1

)
∗
(Z) = X. What is actually proved is the existence of a local diffeomorphism

Φ such that

(
Φ−1

)
∗
(Z)(x, y, x, ω, µ) = N(X)(x, y, z, ω, µ)+O(|y|, |z|)∂x +O(|y|, |z|2)∂y +O(|y|, |z|2)∂z

(2.19)
for all (ω, µ) ∈ Pγ which are sufficiently close to (ω0, 0). The property (2.19) implies
that for all parameter values (ω, µ) in the indicated Cantor set the X-invariant torus
T

n × {0} × {0} is mapped by Φ into a Z-invariant torus on which the Z-flow is conjugate
to the constant flow ω∂x on T

n. This means that a Cantor subset of large measure of the
family T

n × {0} × {0} × P of X-invariant tori survives the perturbation to Z.

(v) The preservation of the normal linear behaviour means that the normal linear vector fields
N(X) and N(Z) along two corresponding invariant tori are conjugated by the derivative
of the C∞-near-identity diffeomorphism.

In comparison to earlier results on persistence of lower-dimensional tori the condition that all
eigenvalues be simple is dropped in Theorem 3 and the condition detΩ(0) 6= 0 is weakened
to bht(i). Indeed, we have the following corollary.

Corollary 4 (Ciocci [17], Broer, Hoo and Naudot [11]) Let the family X ∈ X − of G-
reversible integrable vector fields satisfy the non-degeneracy condition bht(ii) at λ0 = (ω0, 0) ∈
P , with Ω(0) invertible. Then X is quasi-periodically stable.

Next to the above purely reversible case l = 1 also the case l = 2 of a reversing symmetry group
Σ = {Id, F,G,H} merits an explicit formulation. Here H = H2 is given by (2.18) and yields

f(y, SRz) = f(y, z), g(y, SRz) = −g(y, z) and h(y, SRz) = −SRh(y, z) (2.20)

for integrable vector fields where S(zI , zII) = (zI ,−zII). From (2.12) it follows that f, g are
even in z, while h is odd in z. Moreover, (2.4) and (2.20) imply that g(y, z) = 0 for all
(y, z) ∈ R

m × Fix(R) and also for all (y, z) ∈ R
m × Fix(SR).
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Corollary 5 Let X ∈ X− be a family of G-reversible F -equivariant integrable vector fields
that satisfies the non-degeneracy condition bht(ii) at λ0 = (ω0, 0) ∈ P , with Ω(0) invertible
on Fix(S). Then X is quasi-periodically stable.

Remarks.

(i) Again we allow for multiple eigenvalues, in particular the eigenvalue 0 may have multiplicity
larger than two.

(ii) A similar statement holds in case of equivariance with respect to (1.10) instead of (1.8).

(iii) In the covering setting of Section 1, we observe that the lift of an integrable vector field
again is integrable. In fact, if X̂ is the lift to M of an integrable vector field X on N , then
Π∗(X̂) = X and F∗X̂ = X̂ .

(iv) In case the second Mel’nikov condition is violated by a resonance (1.7) we can apply
Corollary 5 on a 2:1 covering space. In Example 2 of Section 5 we do this for a double
normal-internal resonance with fixed resonance vector k ∈ Z

2.

Corollary 6 Let X ∈ X− be a family of G-reversible integrable vector fields that satisfies the
non-degeneracy condition bht(ii) at λ0 = (ω0, 0) ∈ P . If kerΩ(0) is contained in Fix(−R) then
X is quasi-periodically stable.

Remarks.

(i) If ker Ω(0) ⊆ Fix(+R) we generically expect a quasi-periodic centre-saddle bifurcation to
take place, cf. [20]. Here violations of the first Mel’nikov condition prevents persistence of
the corresponding tori if not embedded in an appropriate bifurcation scenario.

(ii) The scaling (2.6) also can be applied to non-integrable systems, making the non-integrable
higher order terms a small perturbation. It is then not automatic that the resulting dom-
inant part is in Floquet form, this is a necessary extra requirement that can be thought of
as generalization of integrability under which quasi-periodic stability can still be achieved.
For a more thorough discussion of these questions see [14].

3 Unfolding reversible linear operators

Let Ω0 ∈ gl−(2p; R) be given; the aim of this section is to summarize some results from [17, 23,
27] which allow to describe a miniversal unfolding of Ω0, and to work out the details for two
particular cases.

Let Ω0 = S0 +N0 be the Jordan-Chevalley decomposition of Ω0 into commuting semisimple and
nilpotent parts. The uniqueness of this decomposition implies that both S0 and N0 belong to
gl−(2p; R). Also

ker ad(Ω0) = ker ad(S0) ∩ ker ad(N0), (3.1)

as easily follows from the fact that S0 and N0 commute.
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It is shown in [17, 27] that it is possible to construct a scalar product 〈·, ·〉 on R
2p such that

when we denote the transpose of any A ∈ gl(2p; R) with respect to this scalar product by AT

then the following holds:

(i) R is orthogonal, i.e. RT R = id; since R2 = id it follows that R is symmetric: RT = R;

(ii) ker ad(ST
0 ) = ker ad(S0).

It follows from (i) that for any Ω ∈ gl−(2p; R) also ΩT belongs to gl−(2p; R); in particular, both
ST

0 and N T
0 belong to gl−(2p; R). Applying (3.1) to ΩT

0 and using (ii) gives

ker ad(ΩT
0 ) = ker ad(S0) ∩ ker ad(N T

0 ). (3.2)

The next step towards a miniversal unfolding of Ω0 consists in defining a scalar product 〈〈· , ·〉〉
on gl(2p; R) by

〈〈A ,B〉〉 := trace (AT B) ∀A,B ∈ gl(2p; R), (3.3)

where AT is the transpose of A ∈ gl(2p; R) with respect to the scalar product in R
2p which we

just introduced. A simple calculation shows that for each A0, A,B ∈ gl(2p; R) we have

〈〈ad(A0) · A ,B〉〉 = 〈〈A , ad(AT
0 ) · B〉〉, (3.4)

which means that the adjoint (ad(A0))
∗ of ad(A0) ∈ L(gl(2p; R)) with respect to 〈〈· , ·〉〉 is given

by (ad(A0))
∗ = ad(AT

0 ) ∈ L(gl(2p; R)). Taking A0 = Ω0 ∈ gl−(2p; R), A ∈ gl+(2p; R), B ∈
gl−(2p; R), and using the fact that both ad(Ω0) and ad(ΩT

0 ) map gl±(2p; R) into gl∓(2p; R), we
deduce from (3.4) that (ad+(Ω0))

∗ = ad−(ΩT
0 ); here ad+(Ω0) denotes the restriction of ad(Ω0)

to gl+(2p; R), considered as a linear mapping from gl+(2p; R) into gl−(2p; R), while ad−(ΩT
0 )

denotes the restriction of ad(ΩT
0 ) to gl−(2p; R), considered as a linear mapping from gl−(2p; R)

into gl+(2p; R).

We know from (2.9) that TΩ0
O(Ω0) = im (ad+(Ω0)), while a classical result from linear algebra

in combination with the foregoing shows that

gl−(2p; R) = im (ad+(Ω0)) ⊕ ker ((ad+(Ω0))
∗) = im (ad+(Ω0)) ⊕ ker (ad−(ΩT

0 )). (3.5)

This proves that the subspace ker (ad−(ΩT
0 )) of gl−(2p; R) forms a complement of the tangent

space TΩ0
O(Ω0) to the orbit through Ω0. Finally, ker (ad−(ΩT

0 )) = ker (ad−(S0))∩ker (ad−(N T
0 ))

by (3.2), and hence we obtain the following result.

Theorem 7 Let Ω0 ∈ gl−(2p; R) be given, and let Ω0 = S0 + N0 be the Jordan-Chevalley
decomposition of Ω0. Then

Ω : ker (ad−(S0)) ∩ ker (ad−(N T
0 )) −→ gl−(2p; R), A 7→ Ω0 + A, (3.6)

forms a miniversal unfolding of Ω0 ∈ gl−(2p; R). In (3.6) the transpose must be taken with
respect to a scalar product which satisfies the above requirements (i)-(ii).

Remark. The dimension of ker(ad−(ΩT
0 )) is the codimension c of Ω0, in particular c = p if all

eigenvalues of Ω0 are different from 0 and from one another (whence it follows that N0 = 0).
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The unfolding Ω(µ) obtained in Theorem 7 (with µ = A ∈ ker (ad−(S0)) ∩ ker (ad−(N T
0 ))) is

such that Ω(µ) commutes with the semisimple part S0 of Ω0, i.e. Ω(µ) is in the centralizer of S0.
In the present context of linear systems one calls such an unfolding a linear centralizer unfolding
(lcu for short). Also note that Ω(µ) − Ω0 is linear in the unfolding parameters.

For the convenience of the reader we now explicitly work out a linear centralizer unfolding (3.6)
for three particular choices of (Ω0, R).

3.1 Unfolding multiple non-zero normal frequencies

For our first example we assume that Ω0 ∈ gl−(2p; R) has a 1 : 1 : · · · : 1 resonance (or p-fold
resonance), meaning that Ω0 has a pair of purely imaginary eigenvalues, say ±i, with algebraic
multiplicity p; we furthermore assume that we are in the generic situation, with geometric
multiplicity 1. Then S2

0 = −id, and S0 generates together with R a finite group. Since S0 is
non-singular and maps Fix(±R) into Fix(∓R) every subspace of R

2p which is invariant under
both S0 and R must be even-dimensional and can be written as the direct sum of a subspace of
Fix(R) and a subspace of Fix(−R), both with the same dimension.

The assumptions also imply that N j
0 6= 0 for 1 ≤ j ≤ p − 1, while N p

0 = 0; moreover,

dimker(N0) = 2 and dimker(N p
0 ) = 2p. The subspaces ker(N j

0 ) (1 ≤ j ≤ p) form a strictly in-

creasing sequence of subspaces invariant under S0 and R, with dimker(N j
0 )−dimker(N j−1

0 ) = 2.

Let Up be a complement of ker(N p−1

0 ) in R
2p which is invariant under S0 and R, and let

Uj := N p−j
0 (Up) for 1 ≤ j < p. Then

ker(N j
0 ) = U1 ⊕ U2 ⊕ · · · ⊕ Uj ,

in particular R
2p = U1 ⊕ U2 ⊕ · · · ⊕ Up. Moreover, dimUj = 2 and N0 is an isomorphism of Uj

onto Uj−1. Each Uj is invariant under S0 and R and

Uj = (Uj ∩ Fix(R)) ⊕ (Uj ∩ Fix(−R))

is the splitting in 1-dimensional subspaces of Fix(R) and Fix(−R). Finally we choose as fol-
lows a basis {u+

j , u−
j } of Uj: let u+

p be a non-zero vector of Up ∩ Fix(R), let u−
p := −S0u

+
p ,

and then set u+
j−1

:= N0u
−
j and u−

j−1
:= −N0u

+
j for 2 ≤ j ≤ p. With respect to the basis

{u+
1 , u−

1 , u+
2 , u−

2 , . . . , u+
p , u−

p } of R
2p the linear operators Ω0 and R have the matrix form

Ω0 =




J2 J2 O2 . . . O2

O2 J2 J2

. . .
...

...
. . .

. . .
. . . O2

...
. . .

. . . J2

O2 . . . . . . O2 J2




, R =




R2 O2 O2 . . . O2

O2 R2 O2

. . .
...

...
. . .

. . .
. . . O2

...
. . .

. . . O2

O2 . . . . . . O2 R2




(3.7)

with

J2 =

(
0 1

−1 0

)
, O2 =

(
0 0
0 0

)
and R2 =

(
1 0
0 −1

)
. (3.8)
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Using the standard scalar product associated with this basis we see that S0 is anti-symmetric
and R symmetric; hence this scalar product satisfies the above requirements (i)-(ii), and we can
use the foregoing general results to determine a miniversal unfolding of Ω0.

From (3.7) and (3.8) one can make some further observations:

(i) If A ∈ ker(ad−(S0)) and A(Uj) ⊂ Uj then there exist some µ ∈ R such that A(uj) = µS0uj

for all uj ∈ Uj ;

(ii) N T
0 (Uj) = Uj+1 for 1 ≤ j ≤ p − 1, and N T

0 (Up) = {0};
(iii) N j

0

(
N T

0

)j
equals the identity on Up−j for 1 ≤ j ≤ p − 1.

We now use these observations to compute an lcu of Ω0.

Lemma 8 Fix an A ∈ ker (ad−(S0))∩ker (ad−(N T
0 )). Then there exist constants µ1, µ2, . . . , µp ∈

R such that if we set

Aj := A −
j∑

i=1

µiSi
0

(
N T

0

)i−1
, (1 ≤ j ≤ p),

then Aj(Up−i) = {0} for 1 ≤ j ≤ p and 0 ≤ i ≤ j − 1. In the particular case that j = p we have

A =

p∑

i=1

µiSi
0

(
N T

0

)i−1
. (3.9)

Proof. We use induction on j. Since A commutes with N T
0 it maps Up = ker(N T

0 ) into itself;
by observation (i) it follows that there exists some constant µ1 ∈ R such that A(up) = µ1S0(up)
for all up ∈ Up. This proves the claim for j = 1. Next suppose that the claim is satisfied for some
j with 1 ≤ j ≤ p− 1. Then N T

0 Aj(Up−j) = Aj(N T
0 (Up−j)) = Aj(Up−j+1) = {0}, by observation

(ii) and the induction hypothesis. It follows that Aj(Up−j) ⊂ Up and AjN j
0S−j

0 (Up) ⊂ Up;

by observation (i) there exists some µj+1 ∈ R such that AjN j
0S−j

0 (up) = µj+1S0(up) for all

up ∈ Up. Setting up =
(
N T

0

)j
(up−j) for some up−j ∈ Up−j and using observation (iii) shows

that Aj+1(Up−j) = {0}; since obviously Aj+1(Up−i) = {0} for 0 ≤ i ≤ j−1 this proves the claim
for j + 1. 2

Combining (3.7) and (3.9) an lcu of Ω0 takes the explicit form

Ω(µ) = Ω0 +




µ1J2 O2 O2 . . . O2

µ2J2 µ1J2 O2

. . .
...

...
. . .

. . .
. . . O2

...
. . .

. . . O2

µpJ2 . . . . . . µ2J2 µ1J2




(3.10)

with unfolding parameters µ1, . . . , µp ∈ R.

Remarks.

(i) This construction invariably leads to the same lcu , we therefore speak from now on of
the lcu .

17



(ii) Writing a general element A ∈ gl−(2p, R) in block form

A =




A1,1 . . . A1,p

...
. . .

...
Ap,1 . . . Ap,p


 , with Ai,j ∈ gl(2, R),

it is easy to verify that A ∈ gl−(2p, R) if and only if R2Ai,jR2 = −Ai,j, i.e. if and only if
each of the 2 × 2 matrices Ai,j have the form

Ai,j =

(
0 ai,j

bi,j 0

)
, ai,j, bi,j ∈ R, 1 ≤ i, j ≤ 2p.

(iii) In case all eigenvalues of Ω0 ∈ gl−(2p; R) are purely imaginary, non-zero and with geo-
metric multiplicity 1, the lcu of Ω0 can be obtained by considering the different pairs of
eigenvalues ±iαj , multiplying (3.10) with αj (using for each j the appropriate dimension
and a new set of parameters), and juxtaposing the obtained unfoldings as blocks along the
diagonal.

3.2 Unfolding multiple eigenvalue zero

For our second and third example we assume that Ω0 ∈ gl−(2p; R) has 0 as an eigenvalue with

geometric multiplicity 1 and algebraic multiplicity 2p; then S0 = 0, N0 = Ω0, N j
0 6= 0 for

1 ≤ j < 2p, and N 2p
0 = 0. The subspaces ker(N j

0 ), 1 ≤ j ≤ 2p are invariant under R; they form

a strictly increasing sequence, with dimker(N j
0 )−dimker(N j−1

0 ) = 1. Let U2p be an R-invariant

complement of ker(N 2p−1

0 ) in R
2p, and let Uj := N 2p−j

0 (U2p) for 1 ≤ j < 2p. Then

ker(N j
0 ) = U1 ⊕ · · · ⊕ Uj for all 1 ≤ j ≤ 2p,

in particular R
2p = U1⊕· · ·⊕U2p. Each of the subspaces Uj is R-invariant and one-dimensional,

and N0(Uj) = Uj−1. We obtain a basis {uj | 1 ≤ j ≤ 2p} of R
2p by choosing u2p ∈ U2p

nonzero and setting uj := N 2p−j
0 (u2p) for 1 ≤ j < 2p. With respect to this basis Ω0 = N0 is a

classical nilpotent Jordan matrix with 1’s above the diagonal. The matrix form of R depends
on whether U2p ⊂ Fix(R) or U2p ⊂ Fix(−R), leaving us with two cases. If U2p ⊂ Fix(−R)
then ker(N0) ⊂ Fix(R) and R has the same matrix form as in (3.7), in case U2p ⊂ Fix(R) then
ker(N0) ⊂ Fix(−R) and the matrix form of R equals minus the expression in (3.7). Finally,
using the standard scalar product associated with the chosen basis we see that in both cases R
is symmetric, hence orthogonal, and since S0 = 0 the requirements (i)-(ii) for the scalar product
are again satisfied.

To determine the lcu of Ω0 we first consider some A ∈ ker(ad(N T
0 )); adapting the argument

used for the preceding example one easily shows that A can be written as A =
∑2p

j=1
νj

(
N T

0

)j−1
,

with some constants νj ∈ R (1 ≤ j ≤ 2p). Imposing the further condition that A ∈ gl−(2p; R)
gives νj = 0 for j odd; setting µj := ν2j for 1 ≤ j ≤ p we obtain then the following lcu:

Ω(µ) = Ω0 +

p∑

j=1

µj

(
N T

0

)2j−1
, µ = (µ1, µ2, . . . , µp) ∈ R

p.
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Hence Ω0 has co-dimension p and the lcu is given by

Ω(µ) =




0 1 0 0 0 · · · 0
0 1 0 0 · · · 0

0 1 0 · · · 0
. . .

. . .
. . .

...
. . .

. . . 0

. . . 1
0




+




0
µ1 0
0 µ1 0
µ2 0 µ1 0

0 µ2 0
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .

µp . . . 0 µ2 0 µ1 0




, (3.11)

alternating diagonals with unfolding parameters µj and diagonals with 0. Note that we may
alternatively fix R to be of the form (3.7) and obtain the two cases by taking (3.11) and its
transpose, with Ω0 = N0 having its 1’s below the diagonal.

Remarks.

(i) In case the condition dimker(Ω0) = 1 on the geometric multiplicity of the zero eigenvalue
is dropped the unfolding changes drastically and requires more parameters, i.e., has higher
codimension. The same is true for our first example (non-zero normal frequencies). Further
information on these cases can be found in [23].

(ii) The unfolding (3.11) recovers the result for the case p = 2 that was obtained in [25]. There
a 4-dimensional reversible system with a codimension 2 singularity at the origin is stud-
ied by formal normal forms together with the persistence of the associated codimension 1
bifurcation phenomena. It would be interesting to investigate the persistence of the corre-
sponding bifurcation scenario in the kam setting. Note that an additional F -equivariance
next to the G-reversibility would enforce the origin to be an equilibrium for the entire
non-linear family, an assumption similar to (2.5) that is made in [25].

4 Sketch of proof

The proof of Theorem 3 follows [4, 11, 14] almost verbatim (see also [12, 17, 22]). The quite
universal set-up of [14, 31] is based on a Lie algebra approach, using a standard Newtonian
linearization procedure. The conjugation Φ between the integrable and the perturbed family
is produced as the limit of an infinite iteration process. The central ingredient of the proof
is the solution of the linearized problem, the so-called homological equation. The structure at
hand, that is, the reversible symmetry group Σ, is phrased in terms of the Lie algebras X ±,
X±

lin and B± and therefore automatically preserved. Here we content ourselves showing how the
non-degeneracy conditions bht(i) and bht(ii) enter when solving the homological equation.

At each iteration step we look for a transformation (ξ, η, ζ, σ, ν) 7→ (x, y, z, ω, µ) with ω =
σ +Λ1(σ, ν) and µ = ν +Λ2(σ, ν) independent from the variables (ξ, η, ζ) so that the projection
to the parameter space P is preserved. The transformation in the variables is generated by a
Σ-equivariant vector field Ψ ∈ X+ that we write as

Ψ = U∂x + V ∂y + W∂z.
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The homological equation reads
adN(X)(Ψ) = L + N (4.1)

with

Lσ,ν(ξ, η, ζ) = {Z − X}lin,d and Nσ,ν(ξ, η, ζ) = Λ1(σ, ν)∂ξ + Ω(Λ2(σ, ν))ζ∂ζ

and determines the unknown U , V , W , Λ1 and Λ2 according to

Uξσ = Λ1 + f̃

Vξσ + VζΩ(ν)ζ = g̃ + g̃ηη + g̃ζζ (4.2)

Wξσ + [Ω(ν)ζ,W ] = Ω(Λ2)ζ + h̃ + h̃ζζ.

Here U, V,W, f̃ , g̃, h̃ and their derivatives depend on (ξ, 0, 0, σ, ν). Moreover, greek subscripts
denote derivatives, while Uξσ = Σn

j=1Uξj
σj and similarly for V and W . These linear equations

are solved by suitably truncated Fourier series. Note that the left hand side of (4.2) consists of
the components of the vector field adN(Xσ,ν)(Ψ), where

N(Xσ,ν)(ξ, η, ζ) = σ∂ξ + Ω(ν)ζ∂ζ .

For a given Z (and hence L), the goal is to find Ψ ∈ X +
lin,d and N ∈ ker ad N(X)T ⊆ X+

lin,d so

that the homological equation (4.1) is satisfied. Here, X +
lin,d = X+

lin∩X+
d denotes the intersection

set of the Taylor and Fourier truncations of vector fields in X +.

We make the ansatz

V (ξ, η, ζ, σ, ν) = V0 + V1η + V2ζ and W (ξ, η, ζ, σ, ν) = W0 + W1η + W2ζ (4.3)

for the unknown Ψ, where Vj and Wj (j = 0, 1, 2) depend on ξ and on the multiparameter (σ, ν).
Fourier expanding in ξ and comparing coefficients in (4.2) yields the following equations for an
explicit (formal) construction of Ψ. To avoid clumsy notation we suppress the dependence on
(σ, ν).

For k 6= 0, equation (4.2) implies

i〈k, σ〉Uk = f̃k (4.4)

i〈k, σ〉V0,k = g̃k, (4.5)

i〈k, σ〉V1,k = (g̃η)k (4.6)

[i〈k, σ〉 Id +Ω(ν)]V2,k = (g̃ζ)k (4.7)

[i〈k, σ〉 Id−Ω(ν)]W0,k = h̃k (4.8)

[i〈k, σ〉 Id−Ω(ν)]W1,k = (h̃η)k (4.9)

[i〈k, σ〉 Id− adΩ(ν)]W2,k = (h̃ζ)k (4.10)

and, similarly, for k = 0

−Λ1 = f̃0 (4.11)

Ω(ν)V2,0 = (g̃ζ)0 (4.12)

−Ω(ν)W0,0 = h̃0 (4.13)

−Ω(ν)W1,0 = (h̃η)0 (4.14)

− adΩ(ν)W2,k − Ω(Λ2) = (h̃ζ)0. (4.15)
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On the one hand, it is clear by the Diophantine conditions that for k 6= 0 none of the coefficients
at the right hand sides of (4.4)-(4.9) is in the kernel, i.e. none of the eigenvalues i〈k, σ〉, i〈k, σ〉±λj ,
with λj eigenvalue of Ω(ν) are zero. For k = 0, the equations (4.12)-(4.14) are solvable by the
non-degeneracy condition bht(i) since the right hand sides lie in B−. The so-called solvability
condition (4.11) determines the ∂ξ-component

Λ1(σ, ν) = − 1

(2π)n

∫

Tn

f̃(ξ, 0, 0, σ, ν) dξ

of N in (4.1). Turning our attention to equation (4.10), we see that it admits the solution

W2,k = [i〈k, σ〉 Id− adΩ(ν)]−1 (h̃ξ)k

if and only if the operator [i〈k, σ〉 Id− adΩ(ν)] is invertible, which boils down to the condition

i〈k, σ〉 6= λj − λl

on the spectrum of adΩ(ν), where λj is an eigenvalue of Ω(ν). This inequality is the second
Mel’nikov condition and again guaranteed by the Diophantine conditions. For k = 0 the splitting

im(ad+(Ω0)) ⊕ ker(ad−(ΩT
0 )) = gl−(2p, R), (4.16)

see Section 3, lies at the basis of solving equation (4.15). Indeed, the non-degeneracy condition
bht(ii) guarantees that we may choose the lcu for Ω. Using the Implicit Function Theorem
and the fact that Ω (by construction) is an isomorphism between parameter spaces, it follows
that (4.15) admits the solution

Λ2(σ, ν) = Ω−1
(
−π

(
h̃ζ,0 + adΩ(ν)W2,0

))
, (4.17)

where the mapping π denotes the projection of gl−(n, R) onto the subspace ker(ad−(ΩT
0 )) ac-

cording to the splitting (4.16). Compare with [17], Lemma 8.1.

5 Conclusions

The proof in the previous section is formulated in terms of filtered Lie algebras and therefore
exceeds the reversible setting, carrying over to other contexts that can be formulated in these
terms, notably the dissipative, volume preserving and Hamiltonian contexts; possibly combined
with equivariance, cf. [11, 13]. In the Hamiltonian case this answers a conjecture formulated
in [21] to the positive. For dissipative systems this has already been used in [5] when proving
quasi-periodic stability of the frequency-halving bifurcation scenario. We expect that appropri-
ate higher order terms in (2.17) allow to obtain a similar result for reversible systems.

Example 1 (Quasi-periodic response solutions) To show how to check the appropriate
assumptions we consider the simple example of a 1-parameter family of quasi-periodically forced
oscillators

z̈ = fµ(t, z, ż) = hµ(t, ωt, z, ż), (5.1)
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with a fixed frequency ω, for instance we take ω = 1
2
(
√

5 − 1) (the golden mean number). The
forcing hµ is 2π-periodic in the first two arguments. The search is for quasi-periodic response
solutions with this same frequency vector (1, ω).

Putting z1 = z, z2 = ż we can rewrite (5.1) as an autonomous system

ẋ1 = 1

ẋ2 = ω

ż1 = z2

ż2 = hµ(x, z) = h̄µ(z) + h̃µ(x, z)

on T
2 × R

2 where we split hµ into the average h̄µ over T
2 × {z} and the oscillating part h̃µ =

hµ − h̄µ. The integrable vector field Xµ given by

ẋ1 = 1

ẋ2 = ω

ż1 = z2

ż2 = h̄µ(z)

has invariant 2-tori for all z1 ∈ R with h̄µ(z1, 0) = 0. These correspond to response solutions of
the forced oscillator.

Note that we allowed for hµ to depend explicitly on z2 whence z2 7→ −z2 is not a reversing
symmetry. We impose the system to be reversible with respect to

(x1, x2, z1, z2) 7→ (−x1,−x2,−z1, z2),

in particular h̄µ depends on z1 only through z2
1 and we concentrate on the invariant torus at

z = 0. The dominant part
N(Xµ) = ∂x1

+ ω∂x2
+ Ω(µ)z∂z

has the parameter-dependent 2 × 2 matrix

Ω(µ) =

(
0 1

∂1h̄µ(0) ∂2h̄µ(0)

)

which is invertible whenever ∂1h̄µ(0) 6= 0. However, the non-degeneracy condition bht(i) is also
fulfilled if ∂1h̄µ(0) = 0 since the eigenvector to the resulting eigenvalue 0 is not invariant under
the involution

R =

(
−1 0
0 1

)
.

From this we conclude that condition bht(i) is always satisfied.

The non-degeneracy condition bht(ii) is satisfied when

d

dµ
∂1h̄µ(0) 6= 0. (5.2)

Thus, the system is BHT non-degenerate as soon as (5.2) holds true. Therefore, given this by
Corollary 6, if the oscillating part h̃ is sufficiently small, the forced oscillator (5.1) has a response
solution near z = 0, with linear behaviour changing where ∂1h̄µ(0) passes through zero. 2
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Remarks.

(i) Earlier for the existence of a response solution as an extra requirement the condition
∂1h̄µ(0) 6= 0 was needed [11, 12, 13, 30, 31].

(ii) The stability change of the response solution as ∂1h̄µ(0) passes through zero leads in the
periodic case to additional periodic solutions bifurcating off from z = 0, cf. [28, 29, 34].
We expect such bifurcations to carry over to the quasi-periodic case.

We now return to the setting of the introduction where a normal-internal resonance (1.9) with
l = 2 led to a perturbation problem on a 2:1 covering space. The next example shows how the
normally linear vector fields on the covering and the base-space relate to one another.

Example 2 (Multiple normal-internal resonance) On the phase space

N = T
2 × R

3 × R
4 = {x, y, z}

we consider the normally linear vector field

Y = 2∂x1
+ ω∂x2

+ Ω(µ)z∂z

with

Ω(µ) =




0 −1 − µ1 1 0
1 + µ1 0 0 1
−µ2 0 0 −1 − µ1

0 −µ2 1 + µ1 0




where we think of the parameters ν = (ω, µ) ∈ R
3 as been obtained from y ∈ R

3 by localiza-
tion (2.13). The eigenvalues ±i(1 + µ1) ±

√−µ2 of Ω(µ) yield at µ = 0 the normal frequency
α = ±i that has two normal-internal resonances (1.6) and (1.7) with the same k = (1, 0) ∈ Z

2.
Complexifying both ζI

∼= ζ1 + iζ2 and ζII
∼= ζ3 + iζ4 on the covering space

N̂ = R/(4πZ) × T × R
3 × R

4 = {ξ1, ξ2, η, ζ}

we have the covering mapping

Π : N̂ −→ N, (ξ1, ξ2, η, ζ) 7→ (ξ1mod(2πZ), ξ2, η,diag [e
1

2
iξ1 ] ζ). (5.3)

This leads to the deck transformation

F : N̂ −→ N̂ , (ξ1, ξ2, η, ζ) 7→ (ξ1 − 2π, ξ2, η,−ζ)

and the lifted vector field
Ŷ = ω̂1∂ξ1 + ω2∂ξ2 + Ω̂(µ)ζ∂ζ

on N̂ satisfying Π∗Ŷ = Y . In this setting ξ̇1 = ẋ1, implying that ω̂1 = 2 and the corresponding
periods are T̂1 = 2π and T1 = π, so T̂1 = 2T1 as should be expected.
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Regarding the Floquet matrices Ω and Ω̂ we have

ż = diag [
1

2
iξ̇1e

1

2
iξ1 ] ζ + diag [e

1

2
iξ1 ] ζ̇

= diag [e
1

2
iξ1 ]

(
1

2
iξ̇1ζ + Ω̂ζ

)

= diag [e
1

2
iξ1 ]

(
i Id+Ω̂

)
ζ

= diag [e
1

2
iξ1 ]

(
i Id+Ω̂

)
diag [e−

1

2
iξ1 ] z.

Apparently

Ω = diag [e
1

2
iξ1 ]

(
i Id+Ω̂

)
diag [e−

1

2
iξ1 ] = i Id+Ω̂,

and the resulting family

Ω̂(µ) = Ω(µ) − i Id =




0 −µ1 1 0
µ1 0 0 1
−µ2 0 0 −µ1

0 −µ2 µ1 0




of matrices is the lcu of

Ω̂(0) =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 .

Every perturbation of Y on N can be lifted to a perturbation of Ŷ on N̂ that respects the
deck transformation (5.3) and rescaling time we can always arrange ẋ1 = 2, i.e. that the first
frequency equals 2. Applying Corollary 5 we may conclude that Ŷ is quasi-periodically stable
and this implies quasi-periodic stability of Y . It should be noted that such an application of
kam Theory goes beyond the possibilities of [11, 17, 22]. 2

Acknowledgment. The second author received financial support by the European Com-
munity’s 6th Framework Programme, Marie Curie Intraeuropean Fellowship EC contract Ref.
MEIF-CT-2005-515291, award Nr. MATH P00286.

References

[1] V.I. Arnol’d. On matrices depending on parameters. Russ. Math. Surv. 26(2), p. 29–43
(1971)

[2] V.I. Arnol’d. Geometrical Methods in the Theory of Ordinary Differential Equations.
Springer (1983)

[3] J. Bourgain. On Melnikov’s persistency problem. Math. Res. Lett. 4, p. 445–458 (1997)

24



[4] B.J.L. Braaksma and H.W. Broer. On a quasi-periodic Hopf bifurcation. Ann. Inst. H.
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