Matlab Code for Sorted Real Schur Forms
by

Jan Brandts

Also available at URL http://www.math.uu.nl/people/brandts

Universiteit Utrecht

KN

Mathematics
Institute

Preprint
No. 1180
January, 2001

Matlab Code for Sorted Real Schur Forms

Jan Brandts*

January, 2001

Abstract

In Matlab, there exists a standard command to generate a real Schur form,
and another command transforms a real Schur form into a complex one. In
Golub and Van Loan (1996), a Matlab-like routine is sketched that sorts a
complex Schur form: given a target value 7 in the complex plane, the diagonal
elements of the upper triangular factor 7" are ordered according to their distance
to 7. In this note, we implement a procedure to construct sorted real Schur
forms in Matlab. This implementation is based on a block-swapping procedure
by Bai and Demmel (1993). Moreover, we describe how to compute a partial
Schur form (see Saad (1992)) in case the matrix A is too large to compute a
complete Schur form and to order it a posteriori. The sorting of real Schur forms,
both partially and completely, have important applications in the computation
and tracking of invariant subspaces.

1 Schur forms

Here we briefly recall several appearances of the Schur form, the partial Schur form,
and their relation to non-normality as well as to invariant subspaces. Then we
formulate our objectives and motivate the relevance of the chosen topic.

1.1 The classical Schur form and non-normality

A basic fact in numerical algebra [8, 13] is, that any square matrix A can be unitarily
transformed to upper triangular form,

AU =UT, U*U =1 and T is upper triangular. (1)

The diagonal D of I' contains the eigenvalues of A, and the strict upper triangular
part N :=T — D of T gives information about the non-normality of A.

Aisnormal & AA*=A"A & N =0. (2)

The Schur form is not unique. In fact, for each diagonal matrix D containing the
eigenvalues of A there exist corresponding U = U (D) and N = N (D) generating a
Schur form @*AQ =T = D 4+ N. Although N depends on D, the Frobenius norm

*Mathematical Institute, Utrecht University, P.O.Box 80.010, 3508 TA, Utrecht, The Nether-
lands. E-mail: brandts@math.uu.nl

of N does not depend on D (nor on U) but is a quantity uniquely determined by A.
Denoted by v(A), it is usually referred to as A’s departure from normality. In this

context, the formula
n

v(A)? = [IN|2=[1A17 = D I\ (3)
j=1
is well-known. It can be interpreted as Pythagoras’ Theorem in the Hilbert space
of n X n matrices with Frobenius inner product < G, H >= trace(G*H) applied to
the orthogonal decomposition U*AU = D + N.

1.2 The real Schur form

If A is a real matrix, its non-real eigenvalues come in complex conjugate pairs, and
this fact can be used to produce a so-called real Schur form in which both U and
T are real matrices. This goes at the cost of allowing two-by-two blocks on the
diagonal of ', so, strictly speaking, I’ is no longer an upper triangular matrix, but
quasi-triangular. This is illustrated in Figure 1.

Figure 1. Complex Schur
_ T form AU = UT versus Real Schur
A U - U form AQ = QR. In the lat-
ter, there may be diagonal blocks
corresponding to real representa-
R tion of complex conjugate eigen-
A Q = Q values. Any ordering of the diag-

onal blocks can be obtained.

The eigenvalues of the two-by-two blocks are exactly the complex conjugate eigen-
pairs of A. Writing A = v 4+ ui for one of the conjugates and v = y + iz for a
corresponding eigenvector, the real invariant subspace belonging to the conjugate
pair is spanned by y and z and

Aylz) = (y|z TR 4
W=l | ! @
In the context of real Schur forms, we will use the notation AQ = QR as opposed
to AU = UT. Here, @) is real orthogonal and R the corresponding quasi-triangular
real Schur form. Like the complex Schur form, the real Schur form is not unique, in
the sense that the diagonal elements and blocks can appear in any prescribed order.

1.3 The purpose of ordering

The importance of ordering a Schur form comes from the fact that the first & columns
of U and @ form an orthonormal basis for the invariant subspace belonging to the
set of eigenvalues in the k x k top-left part of 7" and R. Of course, in the real
case, k should be such, that no two-by-two block in R is cut into two. Depending
on the interest of the user, it is therefore welcomed to have a tool that brings the
eigenvalues of interest to the top-left part of the (quasi-)triangular matrix. This can

be realized by re-ordering algorithms, which results in ordered Schur forms.

For an ordering algorithm for a Schur form with only one-by-one diagonal blocks
(which includes the complex case), we refer to Section 7.6.2 of Golub and Van Loan
[8]. For a Matlab code based on this algorithm to sort a complex Schur form, see [6].
A direct (as opposed to iterative) ordering algorithm for real Schur forms has been
described and thoroughly analyzed by Bai and Demmel in [2]. Their procedure
will be briefly reviewed in Section 2 of this paper, and implemented in a slightly
different form in Matlab in Section 2.3. Numerical experiments are provided that
illustrate the success of the code when swapping two two-by-two blocks having small
separation. As a more practical application, a real Schur form of the GRCAR(n)
matrix from the Matlab Matrix Gallery will be ordered.

1.4 Partial Schur forms

Suppose that we are only interested in a very low dimensional invariant subspace of
a very large real matrix A. In that case, applying the) R-algorithm to compute a
complete Schur form, to order it, and to discard the data that we are not interested
in, is not a feasible approach. An alternative is, to build a so-called partial Schur
form [12]. This can be done by an inductive procedure in which gradually a tall
skinny matrix U resp. @, and a corresponding small (quasi)triangular real matrix 7'
resp. R are computed such that AU = UT in the complex case, resp. AQ = QR in
the real case, as illustrated in Figure 2.

- MNT

A u = U Figure 2. Partial complex and real Schur
forms AU = UT and AQ) = QR. They are
constructed iteratively as information about

]] E R the spectrum of A becomes available.

A Q = |Q

This approach actually represents a constructive version of the usual existence proof
of Schur forms by induction. Starting off either with a single eigenvector belonging
to the eigenvalue closest to a given target, or with a complex conjugate pair of
which one of the two is closest (over all eigenvalues) to the target, more eigenvalues
and Schur vectors are computed and added. In the complex case, this procedure
is exactly the one followed in [7]. In Section 3, we outline the real case of this
procedure.

1.5 Motivation

Our interest in a complete sorted real Schur form of a matrix results from the
problem of selection in Ritz-Galerkin methods to compute invariant subspaces of
very large though sparse matrices. The Jacobi-Davidson QR and QZ algorithms [7]
and related methods [3, 10] aim to compute an invariant subspace of a non-hermitian
real matrix A belonging to a cluster of £ << n eigenvalues closest to a prescribed

target 7 in the complex plane. By Ritz-Galerkin projection of A on a test-and-trial
space V, an approximation for this invariant subspace of A is extracted from the
projected matrix M := V*AV where V is an orthonormal matrix spanning V.

Figure 3. Ritz values (black dots) in the com-
plex plane and a target value (open dot) 7. A
. selection approach based on the complex Schur
form would select the two complex eigenvectors
corresponding to the two Ritz values in the circle,

. while an approach based on the real Schur form
selects the real four-dimensional subspace corre-
. sponding to the two complex-conjugate pairs.

Since M, though small, may be defective or ill-conditioned, it seems best to select
the first k£ Schur vectors belonging to the Schur decomposition of M for which the &
eigenvalues of M (called Ritz-values) closest to 7 are in the k x & upper left portion
of the triangular factor - ‘best’ in the sense that they represent an orthonormal
basis for the Ritz invariant subspace. Here, we propose to select, together with each
complex Ritz value, also its complex conjugate, even when it is far from the target
(which may happen when 7 is not real). This can be realized by employing sorted
real Schur forms. This might increase the real dimension of the approximation of
the invariant subspace to select from V up to 2k, but it avoids complex arithmetic,
which in turn may be (more than) twice as costly as real arithmetic. Also, it seems
natural not to split up complex conjugate pairs, or alternatively, unnatural to be
interested in a non-real 7 without being interested in 7 as well.

Our interest in a partial sorted real Schur form lies in the same area. After an
approximation of a real eigenvector, or a real two-dimensional eigenspace belonging
to a complex eigenvalue has been computed, this can be interpreted as a minimum
size partial real Schur form. Depending on the wishes of the user of a particular
algorithm, it should then be possible to continue the computation of a next real
Schur vector or two-dimensional real Schur subspace. In Section 3 we will show how
to do this.

1.6 Objectives and outline

This paper is mainly concerned with presenting Matlab programs for the practical
computation of real Schur forms with prescribed conditions for the ordering of the
diagonal blocks. It should be noted that the use of Matlab in scientific computing,
both at research level as well as in teaching applications, has in recent years become
more and more the standard. Therefore we believe that the functions that we will
present, will be a valuable tool for those who want to avoid (and can permit to
avoid, in the sense that in general, Matlab routines will be relatively slow) the use
of LAPACK and related packages. We will distinguish between the two essentially
different approaches that were described in more detail above.

e A complete sorted real Schur form is needed. Given an arbitrary real Schur form,

we perform the re-ordering of the diagonal blocks as given by Bai and Demmel in
[2] in a slightly different form. This will be the topic of Section 2.

e A partial sorted real Schur form of a very large matrix is needed. For this we
suppose we have a black-box large eigenvalueproblem solver at our disposal. Section
3 contains the details.

As mentioned before, Matlab includes a routine that computes a real Schur form
when the given matrix A is real, and also a routine that transforms a given real
Schur form into a complex Schur form. It does not include any ordering algorithm
for Schur forms. For an algorithm that orders a complex Schur form we refer to [8],
and for a Matlab version of this algorithm to [6].

2 Computing sorted real Schur forms

Let A be a real matrix, and AQ) = QR a real Schur form. We will show how to swap
the positions of two adjacent diagonal blocks, assuming that those blocks do not
have eigenvalues in common. Once it is known how to swap two adjacent blocks, a
bubblesort-like method can easily be described to obtain almost any ordering of the
diagonal blocks: the only restriction is that blocks that have eigenvalues in common,
stay in their original order.

2.1 The Bai-Demmel algorithm

The algorithm by Bai and Demmel [2] is an improved version of earlier ideas of
Ruhe [11], of Dongarra, Hammarling and Wilkinson [5], of Cao and Zhang [4] and
of Ng and Parlett [9]. The following theorem from the last-mentioned paper forms
the basis of the algorithm.

Theorem 2.1 Let A be a matrix that is partitioned as follows,

| A Agg
=] ®)

where Ayy is p X p, Agg is ¢ X q and p,q € {1,2}. Assume that A;; and Ay have no
eigenvalues in common, and that X is the solution of the Sylvester equation

4411X - XA422 - 1412. (6)
Let Q@ be an orthogonal matrix of size (p+ q) X (p+ q) such that
|l =X | _| R
o[] G
for some invertible matrix R. Then,

QTAQ: [ANll Ail?]

0 Ay

and A;; is similar to A;; fori € {1,2}.

It seems that this completely solves the problem of how to swap adjacent diagonal
blocks. Indeed, it does so in exact arithmetic. In practice however, one should be
careful how to implement the above theorem.

2.2 Swapping in finite precision arithmetic

As observed in the analysis of [2], there are a number of stability issues that deserve
some more attention. For example, the Sylvester equation (6) may be ill-conditioned,
even when the eigenvalues of Ay; and Ayy are not very close. The correct measure
for the stability of the Sylvester equation is the smallest singular value o of the
linear operator X +— Ay; X — X Ayy, also called the separation between Aj; and Agys.
In case A is non-normal, ¢ may be much smaller than the eigenvalue gap between
the two blocks. In [2], a number of safety-measures are proposed to handle this and
other stability problems:

1 The two-by-two blocks are kept in standardized form: the diagonal entries are
equal, and the off-diagonal elements of opposite sign.

2 Solve A1 X — X Ayy = vA15 by Gaussian elimination with complete pivoting
on the Kronecker product formulation of this equation, where v < 1 is chosen
to prevent overflow in (6).

3 The QR-decomposition in (7) is performed through Householder reflections.
Note that if in the previous step we used a v # 1, in (7) we need to replace I,

by v1,.

4 Swapping is only performed if the norm of the (2,1) block Ay; of the result
after swapping will be small enough. In the LAPACK [1] implementation this
condition is |[Ag1]|ec < 10€||Al|s, Where & is the machine precision.

The authors of [2] claim (p. 79), that if these rules are obeyed, “this gives an absolute
guarantee of backward stability”, and they support this claim with an elaborate
error analysis. However, they cannot guarantee that all swaps necessary for a given
ordering will made. Indeed, in the last of the four safety measures above they suggest
not to perform a swap in case instability is suspected.

2.3 Matlab algorithm design

In the Matlab code that we will present, we follow a slightly different approach as
suggested in [2]. We will respect items 1-3 in the list of safety-measures above, but
refrain from item 4. Being aware that this might introduce instability, we propose
to do the following to detect instability a posteriori.

e Given a real Schur decomposition, compute a priori a complete list of all n
swaps that are necessary to obtain a certain ordering.

e Perform those swaps one by one, regardless of item 4 of the safety-measures,
where standardization, if necessary, takes place before each swap. At each
swap j, compute the quotient ¢; := ||Ag||oo/(10€]|A|se) of that particular
swap. The vector ¢ = (q1, ..., ¢,) will be called an a posteriori error indicator.

e If it turns out a posteriori, that all those quotients are smaller than one, accept
the computed sorted real Schur form. If there are one or more quotients too
large, one should be aware of a possibly inaccurate result.

2.3.1 Standardization of the two-by-two blocks

Prior to swapping two blocks, both blocks will be brought onto standardized form
by an orthogonal similarity transformation. So, let a block B and an orthogonal
matrix C' be given as follows,

B::lb11 bu] and C’::[cs]. (9)

b21 1)22 —S C

where ¢ = cos(f) and s = sin(#) for some angle 6, and assume that by; # by, so
standardization is needed. Computation of the (1,1) and (2,2) entries of CTBC
and demanding that they are equal leads to the following equation for ¢ and s,

b11(62 - 82) + 622(82 - CQ) = —2(1)12 + bgl)CS. (10)
Since ¢ = 0 contradicts b1y # byg, we can introduce the variable t = s/e¢. This
transforms (10) into

b1z + bay
bi1 — bag’

With ¢, the smallest root of (11), we get that § < 7/4 and

t? =27t —1=0, where 7:=

(11)

1
c= —— and s=tc. (12)
Ve
This completes the definition of an orthogonal transformation C standardizing the
block B.

2.3.2 Construction of an a priori list of swaps

We will use the bubble-sort algorithm to obtain the ordering of the diagonal blocks
that the user has in mind. A useful data-structure is formed by an array s that has
as j-th entry, the position of the j-th block on the diagonal of the given real Schur
form. For example, as depicted in Figure 4, if the quasi-triangle has, from upper left
to lower right, blocks of sizes 2,2,1,2,1,2, then the array s has as entries 1,3,5,6,8,9,11,
where the last entry denotes the size of the matrix plus one for convenience.

Figure 4. A real Schur form with block-sizes
2,2,1,2,1,2 gives rise to an array 1,3,5,6,8,9,11 de-
termining the top-left position of each block. The
bottom-right value 11 is a dummy value for conve-
nience of programming.

The eigenvalues of each block are computed and an objective ordering is defined,
depending on the wishes of the user. This objective ordering is a permutation of
the given ordering and can therefore be realized by a sequence of, say, n swaps of
neighboring pairs. Such a sequence will be represented by a vector p = (p1,...,pn)
where p; = k means that in swap number j, the k-th and (k4 1)-st block should be
swapped. We will call such a vector p a swaplist.

; ; ? ? ?1 431 i Example. Applying the six swaps from the swaplist
alalalalilale p= (2,1, 3,?, 33 4) turns.the initial ordering (1,2, 3,4, 5)
alalalalalils into the objective ordering (3,4,2,5,1). The step-by-
slslslslslsll step results are visible in the tabular on the left.

As mentioned before, the list of swaps necessary to obtain the objective ordering
by bubble-sort will be made a priori and will be applied regardless of what may go
wrong due to instability during the process. The error indicator ¢ = (¢4, ..., ¢,) will
give a posteriori information about the success of the procedure.

2.3.3 Further building blocks: stable LU- and () R-factorization

Since Matlab does not have a function for LU-decomposition with complete pivoting,
we include one ourselves. It is based on Algorithm 3.4.2 on page 118 of Golub
and Van Loan [8]. The scaling factor v to prevent overflow (see the list of safety
measures), will be chosen as the the smallest diagonal entry of the upper triangular
factor U that is computed.

The Matlab () R-factorization is built upon the LAPACK routine DGEQRF [1],
which employs Householder factorization in double precision. So we can safely use
the Matlab function qr for this purpose.

2.4 The Matlab function SRSchur

Our Matlab function SRSchur, which stands for Sort Real Schur, orders a given
real Schur form. The form in which we present the Matlab code of this function in
the Appendix is not optimal. It contains many (sub-)function calls and is relatively
slow. The advantage is that its structure, depicted in Figure 5 below, is clear.

Figure 5. Sorting real Schur
normalize F SRSchur > Sswap forms. Main function SRSchur
calling sub-functions, of which

the function swap is the most

ot , important.

swaplist lu_complpiv

4

(]

The user interested in a faster implementation can easily put all pieces together in
one file and remove all calls of subfunctions. We now list those sub-functions and
explain their tasks.

e [U,S] = normalize(U,S,v) applies a Givens rotation such that the two-by-
two diagonal block of S situated at diagonal positions v(1), v(2) is in standard-
ized form. See Section 2.3.1.

¢ Q = rot(X) computes such a Givens rotation needed for normalization.

e v = swaplist(p,s,z,b) produces the list v of swaps of neighboring blocks
needed to order the eigenvalues assembled in the vector v from closest to z to
farthest away from z, taking into account the parameter b (see Section 2.3.2).

e [val,pos| = select(p,z) determines which element is next in the ordering.

e [U,S] = swap(U,S,v,w) swaps the two diagonal blocks at positions symbol-
ized by the entries of v and w. See Theorem 2.1.

e [L,U,P,Q] = lu_complpiv(A) computes the LU-decomposition of A with
complete pivoting, i.e., PAQ) = LU, with permutations P and ¢ symbolized
by vectors.

2.5 Numerical tests

We performed some numerical experiments to test our routines. Matlab version
5.3 was used, for which & = 2.22¢ — 16. For comparison, we took the first three
4 x 4 matrices from Table 1 of [2]. Since in [2], the machine precision was only
€ = 1.192e — 7, we include a fourth matrix with a machine precision separation
between the two blocks to be swapped. As in [2], we tested if the quantities

_1=QMQl oy g, - 1A= Q4Q", 13

a
£ &l Al

are around one. Instead of giving the eigenvalues before and after the swap, we
present their relative perturbation resulting from the swap, i.e., if A is an eigenvalue
before the swap, and A the corresponding eigenvalue after the swap, we list the
quantity

kg

A -4

Al
We only present this quantity for one of the complex conjugates, so only one number
per block.

B\ =

(14)

The results are summarized in Table 1 below, and show that even in the case of the
extremely small separation ~ 107'7, the swaps are performed satisfactorily, although
the relative error ~ 103¢ in the eigenvalues is much bigger than for the first three
matrices.

Remark 2.2 In a version of the Bai-Demmel algorithm in which we did not nor-
malize the two-by-two blocks and in which standard LU-decomposition was used,

the results were comparable for the first three matrices, and only about a factor two
worse for the last. This suggests that for applications in which the separation is
moderate, this faster version could be feasible. However, the separation is usually
not known in advance. This faster version of the algorithm can easily be obtained by
adapting the code above. Just replace the function lu_complpiv with the Matlab
built-in function lu and skip all the normalizations.

matrix A separation Eg Ea Ey, Ey,

2 —87 —20000 10000

ooy T o 3x 107" 2,005 3.2753 15280 3.1824
0 0 1 -1

0 0 37 1

1 -3 3576 4888

11 —88 —1440 »

0 0 1001 -3 8 x 10 2182 1617 0 2.498
0 0 1.001 1.001

1 —100 400 -—1000

0.01 11200 —10) . .
0 0 1001 —0.01 2% 10 2.014 1958 0.707 3.161
0 0 100 1.001
1 —10* 8812 4566
10-* 1 -9 1200 _17
0 0 10541 104 ~ 10 1.663 0.370 836.9 500.1
0 0 104 107541

Table 1.

2.5.1 Ordering the eigenvalues of the GRCAR matrix

As a second experiment, we ordered the eigenvalues of the highly non-normal ma-
trix GRCAR(n) taken from the Matlab Gallery Testmatrices. For the values n =
50, 100, 200, we first used the Matlab function schur to compute a real Schur de-
composition. Then, SRSchur was called with target z = 0. In Table 2 below, we
give the number of swaps that were made, and the quantities Fg and F,4. It should
be noted that those contain the errors of both schur and SRSchur. In Figure 6,
the a posteriori error indicators for the swaps needed to sort GRCAR(200) are given.
They are all well below one, indicating a successful and stable ordering process.

We conclude from our experiments that the function SRSchur seems to perform
the task of ordering the diagonal blocks relative to a given target in the complex
well in a satisfactory manner.

10

A POSTERIORI INSTABILITY INDICATOR
0.25 T T T T T

Figure 6. Instability indicator
values for the 99 swaps needed
to order the blocks of a Schur
form of the GRCAR(200) ma-
| trix. This matrix is highly non-
normal. All values are safely be-

INDICATOR VALUE
2
o

o
e

low one.
005 1
% w m o w @ @ w0
SWAPS
grear(n) swaps o Fa Table 2. Values of Eg and
50 94 991x 10! 6.45x 10! F 4 for the sorting of the GRCAR
o) matrix. The table suggests an ac-
cumulation of errors linear in the
100 49 1.96 x 102 1.06 x 102 number of swaps.
200 99 3.63x 10> 2.25x 10°

2.6 Alternative orderings

Using the Matlab code, either (i) —b blocks or (ii) b or b+ 1 eigenvalues or (iii)
all blocks/eigenvalues, are ordered with respect to a target z in the complex plane.
After ordering, the top-left block is the one containing an eigenvalue closest to z.

Since basically, all eigenvalues of A can be computed cheaply through the input real
Schur form of A, the parameters z and b of the function SRSchur provide a wide
range of possibilities to order the real Schur form according to the wishes of the user.
For example, if it is needed to separate the eigenvalues with positive real part from
the ones with non-positive real part, this can be established for example, by calling

[q,r] = schur(A);

z = max(abs(eig(r)));

[Q,R,ap] = SRSchur(q,r,z,0);

As a matter of fact, by using the parameter value b = —1, individual blocks can
be moved to the top-left corner one by one. If the user wants the first three blocks

to contain the eigenvalues A, and v, then three consecutive calls with b = 1 and
the targets in reverse order, z = v,z = p and z = A, will realize this ordering of

11

the three blocks. Finally, note that also the function select can be changed easily
according to the wishes of the user.

2.7 Finding eigenvectors of real eigenvalues

The ordering algorithm can be used to find invariant subspaces belonging to each
group of eigenvalues by swapping this group to the top-left corner of the quasi-
triangle. In case one is merely interested in an eigenvector belonging to a real
eigenvalue A, this can be done alternatively as follows.

Let A € IR be given, then M := R — Al is singular. Let j be such, that m;; is
the first (closest to top-left) zero element on the diagonal of M. Then the top-left
(7 —1) x (— 1) part of M is non-singular, and so the j-th column m; of M is
a linear combination of the first j — 1 columns my, ..., m;_; of M. Which linear
combination this is, can easily be deducted from solving the corresponding upper
triangular system (using Matlab notation)

M(:j=1,1:5—ly=M(1:j-1,j), (15)

which produces an eigenvector w := (y*, —1,0,...,0)* of R. This eigenvector trans-
forms to an eigenvector v = Q*w of A.

If the same eigenvalue appears more than once on the diagonal of R, then the di-
mension of the nullspace of M is not necessarily larger than one. Only if M(j,k) =0
as well, where k is the position of the next zero diagonal entry, then another inde-
pendent eigenvector can be found, as illustrated in Figure 7.

Figure 7. Upper triangular matrix M with
multiple zero eigenvalue. Solving Tu = z yields
a first eigenvector (u*,—1,0,...,0)*. Then, solv-

=
=

ing the two upper triangular systems Sw = z and
Tv = y — Uw provides a next independent eigen-
vector (v*,0,w*, —1,0,...,0)*

This procedure generalizes to higher dimensional eigenspaces. If, however, the eigen-
value is defective, we need to consider other methods to compute them. Recall that
a defective eigenvalue is one with algebraic multiplicity strictly larger than the di-
mension of its eigenspace.

3 Computing the partial sorted real Schur form

Let A be a real matrix, and 7 a target value in the complex plane. We will outline
how to gradually build a sorted real Schur decomposition of A, without computing
a complete real Schur decomposition. This approach is necessary if the matrix is
too large to compute a complete Schur decomposition, and is also feasible if only
relatively few Schur vectors are needed. We will assume that we have a suitable
eigensolver available.

12

3.1 Expanding the Real Schur Form

Suppose we are given an eigenvalue A of a real matrix A closest to some target 7.
Since there may be more than one such eigenvalue, we just select one of them. We
now distinguish two possibilities:

o If X is real, let v be a unit length eigenvector belonging to A. Then Av = vA is the
first SPR Schur decomposition for A.

o If A=~ + pe with g # 0 then the first sorted partial real Schur decomposition is
constructed from (4) by () R-decomposition of (y|z) as follows,

QR := (y|z) such that AQ =QR [_Z 5] R (16)
Going for an inductive approach, suppose that we have a sorted partial real Schur
decomposition available consisting of an orthogonal matrix ¢ with £ columns and a
quasi-triangular matrix 1" such that AQ = Q'T". Again, we distinguish two cases.

e et A be a real eigenvalue of A closest to 7 and not yet included in I". The problem
is that A may well be the second (or more) of a defective multiple eigenvalue whose
eigenspace is already completely spanned by the columns of (). So, merely trying to
find a corresponding eigenvector and orthogonalizing it to) might eventually fail.
The following observation leads to a way out. See also [6] Section 6.2.3. We need to
find a real vector ¢ satisfying Q*¢ = 0 and

AQlg) = @lo) [PN] , (17

in order to expand our sorted partial real Schur decomposition. From (17) it follows
that ¢ satisfies
Q*¢=0 and (A= A)g—Qs=0, (18)

which yields that s = Q*(A — A)gq. Using this together with (I — QQ*)q = ¢, we
find

Q7q=0 and (1-QQ")(A-AI)(I-QQ")q=0. (19)
This means that for all y, ¢ + Qy is in fact an eigenvector of the deflated matrix A
A= (1-QQ"A(I - QQ"), (20)

even when A is defective as eigenvalue of A itself. Consequently, ¢ can be computed
as such. Given a sorted partial real Schur decomposition and assuming that the
next eigenvalue in line is real, we compute any eigenvector of A belonging to the
eigenvalue A, and orthonormalize it to). After this, s can be computed, and hence
the sorted partial real Schur form is successfully expanded.

e Alternatively, suppose that the next candidate A = «+ ui in line is not real. Then
we aim to find real (u|v) such that (Q|u|v) is orthogonal and

f
A(Qlulv) = (Qlulv) Z : (21)

="
o 8 o

13

while @, b, ¢, d, e, f are real and such that the two-by-two block formed by «, b, ¢, has
X and X as eigenvalues. In the analysis we will allow complex arithmetic. Indeed,
the real case above does not use that A was real. So, we can conclude that there
exists a non-real eigenvector ¢ of the deflated matrix A from (20) belonging to A,
and with s = Q*(A — AI)q, the Schur form in (17) has real) and R but generally
non-real ¢,s and A. However, substituting ¢ = v 4+ vt and s = 2 + ti, with real
u,v,x,t, gives

T+t

Au+ vi) = (Q|u+ vi) l v+ i

]=Q<w+ti>+(v+m>(u+m’>. (22)

Comparing real and imaginary parts then leads to

Afule) = Q(alt) + (ulo) [Z o] (23)

Let UT be a @ R-decomposition of (u|v), then

AU = Q=1 ' +UT Tt (24)

7oK
v

This means that in (21) we get (e|f) = (z|t)T~!, and

a b | _ 0 Ay U
BB -

In theory, it is now clear how a given partial real Schur form can be expanded. In
practice, we will need an iterative eigensolver that can be fed with deflated matrices.

3.2 Choosing the eigensolver

In order to build a sorted partial real Schur form, we need to be able to compute
eigenvalues of the deflated matrix A closest to a given target. Each time that an
eigenpair is computed, the matrix needs to be deflated with the Schur vectors found
so far before computing the next eigenpair. This gives the computational scheme
given as Algorithm 3.1.

Clearly, not any eigensolver can be used to solve such deflated matrix eigenvalue
problems. We have supposed that A is large and sparse, so explicit multiplication
with the projection matrices I — Q@Q* is not feasible since this would, in general,
ruin the sparsity. Apart from that, I — Q@Q* will be a full matrix itself. So, the best
option would be an eigensolver that only uses the action v — (I —QQ*)A(I —QQ*)v,
which can be performed in relatively cheap separate steps as long as () is a long and
tall matrix.

The ideal and natural option in this context would be the Jacobi-Davidson algo-
rithm [14] or the related Riccati based algorithms [3]. Those algorithms themselves
already include deflation by the current eigenvector approximation in order to ease
the computation of orthogonal corrections to those current approximations. Hence-
forth, they can easily be adapted to include the deflation due to already found Schur

14

vectors assembled in the matrix . The Jacobi-Davidson QR and QZ algorithms
[7] use precisely this idea, though merely for the general complex Schur form. The
template given in Algorithm 3.1 is the adaption for real Schur forms.

ALGORITHM 3.1: Computing a Sorted Partial Real Schur Form
input: A,n, 7
Q=[LRr=[];
fork=1ton
A = -QQMA(l - QQ");
[¢,A\] = eigenpair of A closest to T with Q*q = 0;

s =Q"(A-A)g;
if) is real

Q@ =1[Q,4q};

R =[R,s0A];
else

U, T] = qr([u,v]);
Q =[Q,U];
¥ =[x, 1Y
A =Ty, —p; p, ¥IT™H
R =[R,3%;0,A]
end (if)
end (for)

3.3 Conclusions

When the computation of a complete real Schur form of a real matrix A is too
expensive, a partial Schur form can be constructed using an inductive procedure in
which A is deflated in every step, in order to turn the Schur vectors into eigenvectors
of the deflated matrix. The Jacobi-Davidson algorithm and variations seem good
candidates for computing the eigendata of the deflated matrix.

Acknowledgments

This paper was written in the framework of a project of the Royal Netherlands
Academy of Arts and Sciences (KNAW). The support of KNAW is gratefully ac-
knowledged. Moreover, the author thanks Mark Friedman from the University of
Alabama in Huntsville for useful comments and questions and for applying the Mat-
lab code in the context of continuation methods for invariant subspaces.

15

Appendix

In this Appendix we present a complete version of the Matlab function SRSchur.m
that can be used to sort the diagonal blocks of a given real Schur form. The main
function SRSchur.m and its subfunctions can all be stored in the same file.

function [Q,R,ap] = SRSchur(Q,R,z,b);

SYNTAX: [Q,R,ap] = SRSchur(Q,R,z,b)

WRITTEN BY JAN BRANDTS, UTRECHT UNIVERSITY, FEBRUARY 2001

The author does not wish to be held responsible for incorrect results that
are due to possible errors in this code, nor for any of the consequences of
such errors.

INPUT: orthogonal real Q and quasi-triangular real R such that AQ=QR and a
target z in the complex plane. The fourth parameter b determines the length
of the ordering with respect to z to be produced:

if b < 0 then -b blocks will be sorted,

if b > 0 then b or b+l eigenvalues will be sorted, depending on the sizes
of the blocks,

if b = 0 then the whole real Schur form will be sorted.

OUTPUT: orthogonal real Q and quasi-triangular real R such that AQ=QR with
the diagonal blocks ordered with respect to the target z. The number of

ordered blocks/eigenvalues is determined by the parameter b.

A vector ap warns for inaccuracy of the solution: if an entry of ap exceeds
one, the solution is unreliable.

SUBFUNCTIONS: normalize.m, swaplist.m, select.m, swap.m, lu_complpiv.m

SEE ALSO: schur.m, rsf2csf.m

find(abs(diag(R,-1)) > 100%eps); % Detect subdiagonal nonzero entries,
= 1:size(R,1)+1; % construct from them a vector s with

s(r+1) = [1; % the top-left positions of each block.

for k=1:length(s)-1; % Ranging over all blocks,

sk = s(k);

if s(k+1)-sk == % If the block is 2x2,
[Q,R] = normalize(Q,R,sk:s(k+1)-1); % normalize it
p(k) R(sk,sk)+sqrt(R(sk+1,sk)*R(sk,sk+1)); % store the eigenvalues,

else % (the one with positive imaginary part is sufficient).
p(k) R(s(k),s(k)); % If the block is 1x1, only store the eigenvalue.

end

end

for k = swaplist(p,s,z,b); % For k ranging over all neighbor-swaps

s(k):s(k+1)-1; % collect the coordinates of the blocks,
s(k+1) :s(k+2)-1;
norm(R([v,w], [v,w]),inf); % compute norm of the matrix A from (6),

v

W

nrh

16

[Q,R] = swap(Q,R,v,w); % swap the blocks,

s(k+1) = s(k)+s(k+2)-s(k+1); % update positions of blocks,
v = s(k):s(k+1)-1; % update block-coordinates,
W = s(k+1):s(k+2)-1;
if length(v)==2 % if the first block is 2 x 2,
[Q,R] = normalize(Q,R,Vv); % normalize it,
end
if length(w)==2 % if the second block is 2 x 2,
[Q,R] = normalize(Q,R,w); % normalize it,
end
ap(k) = norm(R(w,v),inf)/(10%*eps*nrh); % measure size of bottom-left block
end % (see p.6, Sect. 2.3).
R =R - tril(R,-2); % Zero the below-block entries

for j=2:length(s)-1; R(s(j),s(j)-1)=0; end % to get a quasi-triangle again.

function [U,S] = normalize(U,S,v);

Q = rot(S(v,v)); % Determine the Givens rotation needed for standar-
S(:,v) = S(:,v)*Q; % dization - and apply it left and right to S, and
S(v,:) = Q’*S(v,:); % right to U. Only rows and columns with indices in
U(:,v) = U(:,v)*Q; % the vector v can be affected by this.

function Q = rot(X);

c=1; s =0; % Start with the identity transformation,
if X(1,1)°=X(2,2); % and if needed, change it into ...
tau = (X(1,2)+X(2,1))/(X(1,1)-X(2,2));
off = sqrt(tau~2+1);
v = [tau - off, tau + off];
[d,w] = min(abs(v));
c = 1/sqrt(1+v(w)~2); % ... the cosine and sine as given in
s = v(w)*c; % Section 2.3.1.
end
Q = [c -s;8 c];

function v = swaplist(p,s,z,b);
n = length(p);
k=0; v=1[];

srtd = 0; % Number of sorted eigenvalues.
q = diff(s); % Compute block sizes.
fini = 0;
while “fini
k = k+1;
[dum,j] = select(p(k:n),z); % Determine which block will go to position k,
p(k:n+1) = [p(j+k-1) p(k:n)]; % insert this block at positiomn k,
p(j+k) = [1; % and remove it from where it was taken.
q(k:n+1) = [q(j+k-1) q(k:n)]; % Similarly for the block-sizes.
q(j+k) = [I;
v = [v,j+k-2:-1:k]; % Update the list of swaps for this block.
srtd = srtd + q(k); % Update the number of sorted eigenvalues.
fini = (k==n-1) | (k==-b) | (srtd==Db) | ((srtd==b+1)&(b~=0));
end

17

function [val,pos] = select(p,z);
y = real(z)+abs(imag(z))*i; % Move target to the upper half plane.
[val pos] = min(abs(p-y)); % Find block closest to the target.

function [U,S] = swap(U,S,v,w);

[p,q] = size(S(v,w)); Ip = eye(p); Iq = eye(q); % p and q are block-sizes

r = [1;

for j=1:q % Vectorize right-hand side for Kronecker product
r = [r;S(v,w(j))]; % formulation of the Sylvester equation (7).

end

K = kron(Iq,S(v,v))-kron(S(w,w)’,Ip); % Kronecker product system matrix.

[L,H,P,Q] = lu_complpiv(K); % LU-decomposition of this matrix.

gamma = min(abs(diag(H))); h Scaling factor to prevent overflow.

sigp = 1:p*q;

for k = 1:p*q-1; % Implement permutation P of the LU-
sigp([k,P(k)]) = sigp([P(k),k]); % decomposition PAQ = LU ...

end

r = gamma*r(sigp); % ... scale and permute the right-hand side.

x = (H\(L\r)); % and solve the two triangular systems.

sigq = 1:p*q;

for k = 1:p*q-1; % Implement permutation Q of the LU-
sigq([k,Q(k)]) = sigq([Q(k),k]1); % decomposition PAQ = LU ...

end

x(sigq) = x; % ... and permute the solution.

X =[1;

for j=1:q % De-vectorize the solution back to a block,
X = [X,x((j=1)*p+1:j*p)]; % or, quit the Kronecker formulation.

end

[Q,R] = qr([-X; gammax*xIq]); % Householder QR-decomposition of X.

S(:,[v,w]) = s(:, [v,w])*Q; % Perform the actual swap by left- and right-

S([v,wl,:) = Q’*S([v,w],:); % multiplication of S by Q, and,

Uu(:,[v,w]) = U(:, [v,w])*Q; % right-multiplication of U by Q.

function [L,U,P,Q] = lu_complpiv(4);
P=1[]; Q=1[]; n=size(4,1);

for k=1:n-1; % See Golub and Van Loan, p. 118 for
[a,r] = max(abs(A(k:n,k:n))); % comments on this LU-decomposition
[dummy,c] = max(abs(a)); % with complete pivoting.
¢l = ctk-1;
v = r(c)+k-1;

A(lk,rwl,:) = A([rw,k],:);
AC:,[k,c1]) = A(C:, [c1,k]);
P(k) = rw; Q(k) = cl;

if A(k,k) "= 0;
rs = k+1:n;
A(rs,k) = A(rs,k)/A(k,k);
A(rs,rs) = A(rs,rs)-A(rs,k)*A(k,rs);
end
end

U =tril(A’)’; L = tril(4,-1) + eye(n);

18

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. Mckenney, S. Ostrouchov and D. Sorensen

(1992). LAPACK Users’ Guide, Release 1.0, STAM.

[2] Z. Bai and J.W. Demmel (1993). On swapping diagonal blocks in real Schur
form, Lineair Algebra Appl. 186:73-95.

[3] J.H. Brandts (2000). A Riccati Algorithm for Eigenvalues and Invariant Sub-
spaces, Preprint nr. 1150 of the Department of Mathematics, Utrecht Univer-
sity, Netherlands.

[4] Z. Cao and F. Zhang (1981). Direct methods for ordering eigenvalues of a real
matrix (in Chinese), Chinese Univ. J. Comput. Math., 1:27-36.

[5] J. Dongarra, S. Hammarling and J. Wilkinson (1992). Numerical considerations
in computing invariant subspaces, STAM J. Math. Anal. Appl., 13:145-161.

[6] D. Fokkema (1996). Subspace methods for linear, nonlinear, and eigen problems,
PhD thesis, Mathematics Department, Utrecht University, Netherlands, ISBN
90-393-1097-1.

[7] D.R. Fokkema, G.L.G. Sleijpen and H.A. Van der Vorst (1999). Jacobi-Davidson
style QR and Q7 algorithms for the reduction of matrix pencils, SIAM J. Sci.
Comput., 20:94-125.

[8] G.H. Golub and C.F. van Loan (1996). Matrix Computations (third edition),
The John Hopkins University Press, Baltimore and London.

[9] K.C. Ng and B.N. Parlett (1988). Development of an accurate algorithm for
EXP(Bt), Part I, Programs to swap diagonal blocks, Part 11, CPAM-294, Univ.
of California, Berkeley.

[10] M. Robbé and M. Sadkane (2000). Riccati-based preconditioner for computing
invariant subspaces of large matrices. Part I: theoretical aspect. Report.

[11] A. Ruhe (1970). An algorithm for numerical determination of the structure of
a genneral matrix, BIT 10:196-216.

[12] Y. Saad (1992). Numerical methods for large eigenvalue problems. Manchester
University Press, Manchester.

[13] I. Schur (1909). On the characteristic roots of a linear substitution with an
application to the theory of integral equations (in German). Math. Ann. 66,
488-510.

[14] G.L.G. Sleijpen and H.A. van der Vorst (1996). Jacobi-Davidson iteration
method for linear eigenvalue problems, SIAM J. Matrix Anal. Applic., 17:401-
425.

19

